[Learning Goals](#page-3-0) [Review](#page-4-0) [The Directional Derivative](#page-6-0) [The Gradient Vector](#page-10-0) [Three Dimensions](#page-15-0)

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Math 213 - Directional Derivatives and the Gradient Vector

Peter A. Perry

University of Kentucky

February 18, 2019

KORK STRAIN A BAR SHOP

Homework

- Remember that WebWork B4 is due Wednesday
- Start working on practice problems in section 14.6, 11-23 (odd), 29, 31, 33, 42, 43, 54, 55, 57
- Re-read section 14.6
- Read ahead for Wednesday section 14.7

KORK STRAIN A BAR SHOP

Unit II: Differential Calculus of Several Variables

- Lecture 12 Functions of Several Variables
- Lecture 13 Partial Derivatives
- Lecture 14 Tangent Planes and Linear Approximation
- Lecture 15 The Chain Rule
- Lecture 16 Directional Derivatives and the Gradient
- Lecture 17 Maximum and Minimum Values, I
- Lecture 18 Maximum and Minimum Values, II
- Lecture 19 Lagrange Multipliers
- Lecture 20 Double Integrals
- Lecture 21 Double Integrals over General Regions
- Lecture 22 Double Integrals in Polar Coordinates

Lecture 23 Exam II Review

KORK ERKER ADE YOUR

Goals of the Day

- Understand what a *directional derivative* of a function of two and three variables is, and how to compute it
- Understand what the gradient vector ∇f is, and how it's related to directional derivatives
- • Understand that the gradient vector:
	- Points in the direction of maximum change of f
	- Has magnitude equal to that maximal rate of change
	- Is perpendicular to level curves (two variables) or level surfaces (three variables)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Review

Suppose that

$$
f_x(1,3) = -2
$$
, $f_y(1,3) = 4$,
 $x(t) = t$, $y(t) = 3t$.

What is the derivative of $f(x(t), y(t))$ at $t = 1$?

K ロ X イロ X K ミ X K ミ X ミ X Y Q Q Q

Review

The Chain Rule, 2 Variables (Case 1) If
\n
$$
z = f(x, y), x = g(t), y = h(t),
$$
\nthen
\n
$$
\frac{dz}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}
$$

If $x(t) = x_0 + at$, $y(t) = y_0 + bt$, what is $(d/dt) f(x(t), y(t))$ at $t = 0$?

[Learning Goals](#page-3-0) [Review](#page-4-0) [The Directional Derivative](#page-6-0) [The Gradient Vector](#page-10-0) [Three Dimensions](#page-15-0)

Review

Suppose $f(x, y)$ is a function of two variables, and (x_0, y_0) is a point in its domain. The partial derivatives of f with respect to x and y are given by:

$$
f_{x}(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}
$$

イロト イ押 トイヨト イヨト

 \Rightarrow

 299

(change in direction of $\langle 1, 0 \rangle$)

Review

Suppose $f(x, y)$ is a function of two variables, and (x_0, y_0) is a point in its domain. The partial derivatives of f with respect to x and y are given by:

$$
f_{x}(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}
$$

(change in direction of $\langle 1, 0 \rangle$)

$$
f_{y}(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h}
$$

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A$

 2990

(change in direction of $(0, 1)$)

The Directional Derivative

Suppose $f(x, y)$ is a function of two variables, (x_0, y_0) is a point in its domain, and $\mathbf{u} = \langle \mathbf{a}, \mathbf{b} \rangle$ is a unit vector.

The directional derivative of f in the direction $u = \langle a, b \rangle$ at (x_0, y_0) is

$$
D_{\mathbf{u}}f(x_0, y_0) =
$$

$$
\lim_{h \to 0} \frac{f(x_0 + ah, y_0 + bh) - f(x_0, y_0)}{h}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

KORKAR KERKER EL VOLO

Computing the Directional Derivative

Remember that

$$
D_{\mathbf{u}}f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ah, y_0 + bh) - f(x_0, y_0)}{h}
$$

If $u = \langle a, b \rangle$, this is the same as the derivative of $f (x_0 + at, y_0 + bt)$ at $t = 0$. We can compute this by the chain rule and get

$$
D_{\mathbf{u}}f(x_0,y_0)=af_x(x_0,y_0)+bf_y(x_0,y_0)
$$

- 1. Find the directional derivative of $f(x, y) = xy^3 x^2$ at $(1, 2)$ in the Find the directional derivation $\mathbf{u} = \langle 1/2, \sqrt{3}2 \rangle$
- 2. Find the directional derivative of $f(x, y) = x^2 \ln y$ at $(3, 1)$ in the direction of $u = (-5/13)i + (12/13)i$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

The Gradient Vector

We can look at the formula

$$
D_{\mathbf{u}}f(x_0,y_0)=af_x(x_0,y_0)+bf_y(x_0,y_0)
$$

in a new way by introducing the gradient of f at (x_0, y_0) : if

$$
(\nabla f)(x_0,y_0)=f_x(x_0,y_0)\mathbf{i}+f_y(x_0,y_0)\mathbf{j}
$$

then

$$
D_{\mathbf{u}}f(x_0,y_0)=\nabla f\cdot\mathbf{u}
$$

- 1. Find the gradient vector for $f(x, y) = x/y$ at $(2, 1)$
- 2. Find the directional derivative of f at $(2,1)$ in the direction $\mathbf{u} = \frac{3}{5}\mathbf{i} + \frac{4}{5}\mathbf{j}$

KORK ERKER ADE YOUR

Maximum Rate of Change

Remember that

$$
\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| \, |\mathbf{b}| \, \cos(\theta)
$$

where θ is the angle between **a** and **b**.

The dot product has its maximum value when the vector a points in the same direction as b.

So, the directional derivative $D_{\mathbf{u}}f(x_0, y_0)$ has its maximum when **u** points in the same direction as $\nabla f(x_0, y_0)$. In this direction, $D_{\mathbf{u}}f(x_0, y_0) = |\nabla f(x_0, y_0)|$

1. Find the maximum rate of change of $f(x, y) = xe^{xy}$ at $(0, 2)$ and find the direction where it occurs.

K ロ > K @ > K 할 > K 할 > 1 할 : ⊙ Q Q^

Sneak Preview: The Gradient Vector Field

If $f(x, y)$ is a function two variables, the gradient vector field

$$
\nabla f(x, y) = \frac{\partial f}{\partial x}(x, y)\mathbf{i} + \frac{\partial f}{\partial y(x, y)}\mathbf{j}
$$

moves in the direction of greatest change of f

The Gradient and Level Curves

The dot product of two vectors a and **b** is zero when a and **b** are perpendicular.

The directional derivative $D_{\mathbf{u}}f$ must be zero when **u** points along a level curve.

So, the gradient of a function f must be perpendicular to the level curves of f

 $\left\{ \begin{array}{ccc} \pm & \pm & \pm \end{array} \right.$

 2990

 \Rightarrow

KORKAR KERKER EL VOLO

Summary

• The gradient of a function $f(x, y)$ at $(x, y) = (x_0, y_0)$ is the vector

$$
\nabla f(x_0,y_0)=f_x(x_0,y_0)\mathbf{i}+f_y(x_0,y_0)\mathbf{j}
$$

• If $u = ai + bj$ is a unit vector, then the directional derivative of f at (x_0, y_0) in the direction **u** is

$$
D_{\mathbf{u}}f(x_0,y_0)=\nabla f(x_0,y_0)\cdot \mathbf{u}
$$

- The gradient $\nabla f(x_0, y_0)$ points in the direction of greatest change of f at (x_0, y_0) . The magnitude of the gradient is equal to the greatest change.
- The gradient $\nabla f(x_0, y_0)$ is perpendicular to the level curve of f passing through (x_0, y_0)

KORK ERKER ADE YOUR

Directional Derivatives of $f(x, y, z)$

The directional derivative of $f(x, y, z)$ at (x_0, y_0, z_0) in the direction $\mathbf{u} = \langle \mathbf{a}, \mathbf{b}, \mathbf{c} \rangle$ is given by

$$
D_{\mathbf{u}}f(x_0, y_0, z_0) = \lim_{h \to 0} \frac{f(x_0 + ah, y_0 + bh, z_0 + ch) - f(x_0, y_0, z_0)}{h}
$$

To compute it, we introduce the gradient vector

$$
\nabla f(x_0, y_0, z_0) = f_x(x_0, y_0, z_0)\mathbf{i} + f_y(x_0, y_0, z_0)\mathbf{j} + f_z(x_0, y_0, z_0)\mathbf{k}
$$

Then, if $\mathbf{u} = \langle a, b, c \rangle$ is a unit vector,

$$
D_{\mathbf{u}}f(x_0,y_0,z_0)=\nabla f(x_0,y_0,z_0)\cdot\mathbf{u}.
$$

- 1. Using the gradient vector, find the directional derivative of $f(x, y, z) = y^2 e^{xyz}$ at $(0, 1, -1)$ in the direction $\mathbf{u} = \frac{3}{13}\mathbf{i} + \frac{4}{13}\mathbf{j} + \frac{12}{13}\mathbf{k}$.
- 2. Find the maximum rate of change of $f(xy, z) = x \ln(yz)$ at $(1, 2, 1/2)$ and find the direction in which it occurs.

Tangent Planes to Level Surfaces

The gradient of a function of two variables is perpendicular to level curves of that function.

The gradient of a function of three variables is perpendicular to level surfaces of that function.

This means that $\nabla f(x_0, y_0, z_0)$ is normal to the tangent plane to f at (x_0, y_0, z_0)

 2990

- 1. Find the equations of the tangent plane and the normal line to the surface $x = y^2 + z^2 + 1$ at $(3, 1, -1)$.
- 2. Are there any points on the hyperboloid $x^2-y^2=-z^2=1$ where the tangent plane is parallel to the plane $z = x + y$?