Vectors, or
 How to Move Around in Space

Peter A. Perry

January 11, 2019

Homework

- Re-read section 12.2, pp. 798-804
- Begin work on problems 3-35 (odd), 41, 45, 47, pp. 805-807
- Continue working on Webwork A1 - Remember to access WebWork only through Canvas!
Also, read section 12.3, pp. 807-813 for Monday

Unit I: Geometry and Motion in Space

Lecture 1 Three-Dimensional Coordinate Systems
Lecture 2 Vectors, or How to Move Around in Space
Lecture 3 The Dot Product, Distances, and Angles
Lecture 4 The Cross Product, Areas, and Volumes
Lecture 5 Equations of Lines and Planes, Part I
Lecture 6 Equations of Lines and Planes, Part II
Lecture 7 Cylinders and Quadric Surfaces
Lecture 8 Vector Functions and Space Curves
Lecture 9 Derivatives and integrals of Vector Functions
Lecture 10 Motion in Space: Velocity and Acceleration
Lecture 11 Functions of Several Variables
Lecture 12 Exam 1 Review

Goals of the Day

- Understand vectors as displacements
- Understand how to combine vectors by addition, subtraction, and scalar multiplication
- Understand components of vectors
- Understand unit vectors, and know the standard basis vectors \mathbf{i}, \mathbf{j}, and \mathbf{k}
- Use vectors to solve problems involving forces and velocities

A vector is a set of instructions for how to move from one location in space to another. We've already seen this in our discussion of coordinate systems.

The vector $\mathbf{v}=\langle 2,4,3\rangle$ is an instruction to move

A vector is a set of instructions for how to move from one location in space to another. We've already seen this in our discussion of coordinate systems.

The vector $\mathbf{v}=\langle 2,4,3\rangle$ is an instruction to move

- 2 units in the x direction

A vector is a set of instructions for how to move from one location in space to another. We've already seen this in our discussion of coordinate systems.

The vector $\mathbf{v}=\langle 2,4,3\rangle$ is an instruction to move

- 2 units in the x direction
- 4 units in the y direction

A vector is a set of instructions for how to move from one location in space to another. We've already seen this in our discussion of coordinate systems.

The vector $\mathbf{v}=\langle 2,4,3\rangle$ is an instruction to move

- 2 units in the x direction
- 4 units in the y direction
- 3 units in the z direction

A vector is a set of instructions for how to move from one location in space to another. We've already seen this in our discussion of coordinate systems.

The vector $\mathbf{v}=\langle 2,4,3\rangle$ is an instruction to move

- 2 units in the x direction
- 4 units in the y direction
- 3 units in the z direction

In this picture:

- the initial point of the vector is $(0,0,0)$
- the final point is $(2,4,3)$.

We could also choose a different initial point...

Let's begin at $A=(0,0,1)$ The vector $\mathbf{v}=\langle 2,4,3\rangle$ is an instruction to move

Let's begin at $A=(0,0,1)$ The vector $\mathbf{v}=\langle 2,4,3\rangle$ is an instruction to move

- 2 units in the x direction

Let's begin at $A=(0,0,1)$ The vector $\mathbf{v}=\langle 2,4,3\rangle$ is an instruction to move

- 2 units in the x direction
- 4 units in the y direction

Let's begin at $A=(0,0,1)$ The vector $\mathbf{v}=\langle 2,4,3\rangle$ is an instruction to move

- 2 units in the x direction
- 4 units in the y direction
- 3 units in the z direction

Let's begin at $A=(0,0,1)$ The vector $\mathbf{v}=\langle 2,4,3\rangle$ is an instruction to move

- 2 units in the x direction
- 4 units in the y direction
- 3 units in the z direction

In this picture:

- the initial point of the vector is $A=(0,0,1)$
- the final point is

$$
B=(2,4,4) .
$$

Another name for the vector \mathbf{v} is

$$
\overrightarrow{A B} .
$$

Puzzler

Can you name all of the equal vectors in the parallelogram shown below?

Vector Addition - Triangle Law

Vector Addition If \mathbf{u} and \mathbf{v} are vectors positioned so that the initial point of \mathbf{v} is at the terminal point of \mathbf{u}, then the sum $\mathbf{u}+\mathbf{v}$ is the vector from the initial point of \mathbf{u} to the terminal point of \mathbf{v}

The Triangle Law

Vector Addition - Parallelogram Law

To add \mathbf{u} and \mathbf{v}, we can either:

The Parallelogram Law

Vector Addition - Parallelogram Law

To add \mathbf{u} and \mathbf{v}, we can either:

- Begin with u

The Parallelogram Law

Vector Addition - Parallelogram Law

To add \mathbf{u} and \mathbf{v}, we can either:

- Begin with u
- Displace by \mathbf{v}

The Parallelogram Law

Vector Addition - Parallelogram Law

To add \mathbf{u} and \mathbf{v}, we can either:

- Begin with u
- Displace by \mathbf{v}
- Obtain $\mathbf{u}+\mathbf{v}$

The Parallelogram Law

Vector Addition - Parallelogram Law

To add \mathbf{u} and \mathbf{v}, we can either:

- Begin with u
- Displace by \mathbf{v}
- Obtain $\mathbf{u}+\mathbf{v}$

OR

The Parallelogram Law

Vector Addition - Parallelogram Law

To add \mathbf{u} and \mathbf{v}, we can either:

- Begin with u
- Displace by \mathbf{v}
- Obtain $\mathbf{u}+\mathbf{v}$

OR

- Begin with v

The Parallelogram Law

Vector Addition - Parallelogram Law

To add \mathbf{u} and \mathbf{v}, we can either:

- Begin with u
- Displace by \mathbf{v}
- Obtain $\mathbf{u}+\mathbf{v}$

OR

- Begin with v
- Displace by \mathbf{u}

The Parallelogram Law

Vector Addition - Parallelogram Law

To add \mathbf{u} and \mathbf{v}, we can either:

- Begin with u
- Displace by \mathbf{v}
- Obtain $\mathbf{u}+\mathbf{v}$

OR

- Begin with v
- Displace by \mathbf{u}
- Obtain v+u

The Parallelogram Law

Vector Addition - Parallelogram Law

To add \mathbf{u} and \mathbf{v}, we can either:

- Begin with u
- Displace by \mathbf{v}
- Obtain $\mathbf{u}+\mathbf{v}$

OR

- Begin with v
- Displace by \mathbf{u}
- Obtain $\mathbf{v}+\mathbf{u}$

The Parallelogram Law
Notice that

$$
\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}
$$

Vector Addition - Spoiler

You can compute $\mathbf{u}+\mathbf{v}$ by adding components:

Vector Addition - Spoiler

You can compute $\mathbf{u}+\mathbf{v}$ by adding components:

Vector Addition - Spoiler

You can compute $\mathbf{u}+\mathbf{v}$ by adding components:

Vector Addition - Spoiler

You can compute $\mathbf{u}+\mathbf{v}$ by adding components:

Scalar Multiplication

Scalar Multiplication If c is a scalar and \mathbf{v} is a vector, then the scalar multiple $c v$ is a vector $|c|$ times the length of \mathbf{v} and whose direction is:

Scalar Multiplication

Scalar Multiplication If c is a scalar and \mathbf{v} is a vector, then the scalar multiple $c \mathbf{v}$ is a vector $|c|$ times the length of \mathbf{v} and whose direction is:

- The same as \mathbf{v}, if $c>0$

Scalar Multiplication

Scalar Multiplication If c is a scalar and \mathbf{v} is a vector, then the scalar multiple $c \mathbf{v}$ is a vector $|c|$ times the length of \mathbf{v} and whose direction is:

- The same as \mathbf{v}, if $c>0$
- Opposite to \mathbf{v}, if $c<0$,

Scalar Multiplication

Scalar Multiplication If c is a scalar and \mathbf{v} is a vector, then the scalar multiple $c \mathbf{v}$ is a vector $|c|$ times the length of \mathbf{v} and whose direction is:

- The same as \mathbf{v}, if $c>0$
- Opposite to \mathbf{v}, if $c<0$,
- The zero vector $\mathbf{0}$ if $c=0$

Scalar Multiplication - Spoiler

You can compute cv by componentwise multiplication:

Scalar Multiplication - Spoiler

You can compute cv by componentwise multiplication:

$$
\mathbf{v}=\langle 1,1\rangle \nearrow \quad 2 \mathbf{v}=\langle 2,2\rangle \quad \frac{1}{2} \mathbf{v}=\left\langle\frac{1}{2}, \frac{1}{2}\right\rangle \nearrow
$$

Scalar Multiplication - Spoiler

You can compute cv by componentwise multiplication:

$$
2 \mathbf{v}=\langle 1,1\rangle \int_{2}=\langle 2,2\rangle, ~ \frac{1}{2} \mathbf{v}=\left\langle\frac{1}{2}, \frac{1}{2}\right\rangle
$$

Vector Subtraction

$$
\mathbf{u}-\mathbf{v}=\mathbf{u}+(-1) \mathbf{v}
$$

Vector Subtraction - Spoiler

You can compute $\mathbf{u}-\mathbf{v}$ by componentwise subtraction:

$$
\langle 3,1\rangle-\langle-1,2\rangle=\langle 4,-1\rangle
$$

Vector Algebra

We've seen three operations on vectors: addition, scalar multiplication, and subtraction. Here are some basic rules for how these operations interact (see your text, p. 802, and know these properties!)

Properties of Vectors If \mathbf{a}, \mathbf{b}, and \mathbf{c} are vectors, and c, d are scalars:

$$
\begin{array}{rlrl}
\mathbf{a}+\mathbf{b} & =\mathbf{b}+\mathbf{a} & \mathbf{a}+(\mathbf{b}+\mathbf{c}) & =(\mathbf{a}+\mathbf{b})+\mathbf{c} \\
\mathbf{a}+\mathbf{0} & =\mathbf{a} & \mathbf{a}+(-\mathbf{a}) & =\mathbf{0} \\
c(\mathbf{a}+\mathbf{b}) & =c \mathbf{a}+c \mathbf{b} & (c+d) \mathbf{a} & =c \mathbf{a}+d \mathbf{a} \\
(c d) \mathbf{a} & =c(d \mathbf{a}) & 1 \mathbf{a} & =\mathbf{a}
\end{array}
$$

Components

Two- and three-dimensional vectors can be specified by their components:

Components

Two- and three-dimensional vectors can be specified by their components:

$$
\mathbf{a}=\left\langle a_{1}, a_{2}\right\rangle
$$

Components

Two- and three-dimensional vectors can be specified by their components:

$$
\mathbf{a}=\left\langle a_{1}, a_{2}\right\rangle
$$

$$
\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle
$$

Vector Operations in Components

- The vector $\overrightarrow{A B}$ from $A\left(x_{1}, y_{1}, z_{1}\right)$ to $B\left(x_{2}, y_{2}, z_{2}\right)$ has components

$$
\overrightarrow{A B}=\left\langle x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right\rangle
$$

- The length of a two-dimensional vector $\mathbf{a}=\left\langle a_{1}, a_{2}\right\rangle$ is

$$
|\mathbf{a}|=\sqrt{a_{1}^{2}+a_{2}^{2}}
$$

- The length of a three-dimensional vector $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ is

$$
|\mathbf{a}|=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}
$$

Vector Operations in Components

If $\mathbf{a}=\left\langle a_{1}, a_{2}\right\rangle$ and $\mathbf{b}=\left\langle b_{1}, b_{2}\right\rangle$, then:

$$
\begin{aligned}
\mathbf{a + b} & =\left\langle a_{1}+b_{1}, a_{2}+b_{2}\right\rangle \\
\mathbf{a - b} & =\left\langle a_{1}-b_{1}, a_{2}-b_{2}\right\rangle \\
c \mathbf{a} & =\left\langle c a_{1}, c a_{2}\right\rangle
\end{aligned}
$$

What are the corresponding rules for three-dimensional vectors?
If $\mathbf{a}=\langle 2,1,2\rangle$ and $\mathbf{b}=\langle 3,-1,5\rangle$, find:

- $\mathbf{a}-\mathbf{b}$
- $2 \mathbf{a}+3 \mathbf{b}$
- $|\mathbf{a}-\mathbf{b}|$

Standard Basis Vectors

Every three-dimensional vector can be expressed in terms of the standard basis vectors

$$
\mathbf{i}=\langle 1,0,0\rangle, \quad \mathbf{j}=\langle 0,1,0\rangle, \quad \mathbf{k}=\langle 0,0,1\rangle
$$

If $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$, then another way of writing \mathbf{a} is

$$
a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}
$$

The vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$ have length 1 . Any such vector is called a unit vector.

Unit Vectors

You can make any nonzero vector a unit vector if you scalar multiply by the inverse of its length.

Find a unit vector in the direction of the vector $\mathbf{i}+2 \mathbf{j}$
Find a unit vector in the direction of the vector $\mathbf{i}+\mathbf{j}+\mathbf{k}$

1. A quarterback throws a football with an angle of elevation of 40° and a speed of $60 \mathrm{ft} / \mathrm{sec}$. Find the horizontal and vertical components of the velocity.
2. A crane suspends a 500 lb steel beam horizontally by support cables. Each support cable makes an angle of 60° with the beam. The cables can withstand a tension of up to 275 pounds. Would you feel safe standing below this rig?
3. A boatman wants to cross a canal that is 3 km wide and wants to land at a point 2 km upstream from his starting point. The current in the canal flows at $3.5 \mathrm{~km} / \mathrm{hr}$ and the speed of his boat is $13 \mathrm{~km} / \mathrm{hr}$.
(a) In what direction should he steer?
(b) How long will the trip take?

Lecture Review

- We saw that vectors are displacements or instructions for moving from one point to another in the plane or in space
- We learned the operations of vector addition, vector subtraction, and scalar multiplication
- We learned how to express vectors in terms of components
- We learned about the unit vectors \mathbf{i}, \mathbf{j}, and \mathbf{k} and how to form a unit vector from any nonzero vector \mathbf{v} : multiply \mathbf{v} by the recipricol of its length

