Vectors, or How to Move Around in Space

Peter A. Perry

January 11, 2019

Homework

- Re-read section 12.2, pp. 798–804
- Begin work on problems 3-35 (odd), 41, 45, 47, pp. 805–807
- Continue working on Webwork A1 Remember to access WebWork only through Canvas!

Also, read section 12.3, pp. 807-813 for Monday

Unit I: Geometry and Motion in Space

Lecture 1	Three-Dimensional Coordinate Systems
Lecture 2	Vectors, or How to Move Around in Space
Lecture 3	The Dot Product, Distances, and Angles
Lecture 4	The Cross Product, Areas, and Volumes
Lecture 5	Equations of Lines and Planes, Part I
Lecture 6	Equations of Lines and Planes, Part II
Lecture 7	Cylinders and Quadric Surfaces
Lecture 8	Vector Functions and Space Curves
Lecture 9	Derivatives and integrals of Vector Functions
Lecture 10	Motion in Space: Velocity and Acceleration
Lecture 11	Functions of Several Variables

Goals of the Day

- Understand vectors as displacements
- Understand how to combine vectors by addition, subtraction, and scalar multiplication
- Understand components of vectors
- Understand unit vectors, and know the standard basis vectors
 i, j, and k
- Use vectors to solve problems involving forces and velocities

The vector $\mathbf{v} = \langle 2, 4, 3 \rangle$ is an instruction to move

The vector $\mathbf{v} = \langle 2, 4, 3 \rangle$ is an instruction to move

• 2 units in the x direction

The vector $\mathbf{v} = \langle 2, 4, 3 \rangle$ is an instruction to move

- 2 units in the x direction
- 4 units in the *y* direction

The vector $\mathbf{v} = \langle 2, 4, 3 \rangle$ is an instruction to move

- 2 units in the x direction
- 4 units in the y direction
- 3 units in the z direction

The vector $\mathbf{v} = \langle 2, 4, 3 \rangle$ is an instruction to move

- 2 units in the x direction
- 4 units in the y direction
- 3 units in the z direction

In this picture:

- the **initial point** of the vector is (0,0,0)
- the **final point** is (2, 4, 3).

We could also choose a different initial point...

• 2 units in the x direction

- 2 units in the x direction
- 4 units in the *y* direction

- 2 units in the x direction
- 4 units in the y direction
- 3 units in the z direction

- 2 units in the x direction
- 4 units in the *y* direction
- 3 units in the z direction

In this picture:

- the initial point of the vector is A = (0, 0, 1)
- the final point is
 B = (2, 4, 4).

Another name for the vector \mathbf{v} is \overrightarrow{AB}

Puzzler

Can you name all of the equal vectors in the parallelogram shown below?

Vector Addition - Triangle Law

Vector Addition If \mathbf{u} and \mathbf{v} are vectors positioned so that the initial point of \mathbf{v} is at the terminal point of \mathbf{u} , then the sum $\mathbf{u} + \mathbf{v}$ is the vector from the initial point of \mathbf{u} to the terminal point of \mathbf{v}

The Triangle Law

To add \mathbf{u} and \mathbf{v} , we can either:

The Parallelogram Law

To add \mathbf{u} and \mathbf{v} , we can either:

Begin with u

The Parallelogram Law

The Parallelogram Law

To add \mathbf{u} and \mathbf{v} , we can either:

- Begin with u
- Displace by v

The Parallelogram Law

To add \mathbf{u} and \mathbf{v} , we can either:

- Begin with u
- Displace by v
- Obtain **u** + **v**

The Parallelogram Law

To add \mathbf{u} and \mathbf{v} , we can either:

- Begin with **u**
- Displace by v
- Obtain **u** + **v**

OR

The Parallelogram Law

To add \mathbf{u} and \mathbf{v} , we can either:

- Begin with **u**
- Displace by v
- Obtain **u** + **v**

OR

Begin with v

The Parallelogram Law

To add \mathbf{u} and \mathbf{v} , we can either:

- Begin with **u**
- Displace by v
- Obtain u + v

OR

- Begin with v
- Displace by u

The Parallelogram Law

To add \mathbf{u} and \mathbf{v} , we can either:

- Begin with **u**
- Displace by v
- Obtain u + v

OR

- Begin with v
- Displace by u
- Obtain v + u

The Parallelogram Law

To add \mathbf{u} and \mathbf{v} , we can either:

- Begin with **u**
- Displace by v
- Obtain **u** + **v**

OR

- Begin with **v**
- Displace by u
- Obtain v + u

Notice that

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

$$\mathbf{u} = \langle 3, 1 \rangle$$

Scalar Multiplication If c is a scalar and \mathbf{v} is a vector, then the **scalar multiple** $c\mathbf{v}$ is a vector |c| times the length of \mathbf{v} and whose direction is:

Scalar Multiplication If c is a scalar and \mathbf{v} is a vector, then the **scalar multiple** $c\mathbf{v}$ is a vector |c| times the length of \mathbf{v} and whose direction is:

• The same as \mathbf{v} , if c > 0

Scalar Multiplication If c is a scalar and \mathbf{v} is a vector, then the **scalar multiple** $c\mathbf{v}$ is a vector |c| times the length of \mathbf{v} and whose direction is:

- The same as \mathbf{v} , if c > 0
- Opposite to \mathbf{v} , if c < 0,

Scalar Multiplication If c is a scalar and \mathbf{v} is a vector, then the **scalar multiple** $c\mathbf{v}$ is a vector |c| times the length of \mathbf{v} and whose direction is:

- The same as \mathbf{v} , if c > 0
- Opposite to \mathbf{v} , if c < 0,
- The zero vector $\mathbf{0}$ if c = 0

Scalar Multiplication - Spoiler

You can compute $c\mathbf{v}$ by componentwise multiplication:

Scalar Multiplication - Spoiler

You can compute **cv** by **componentwise multiplication**:

Scalar Multiplication - Spoiler

You can compute $c\mathbf{v}$ by componentwise multiplication:

$$\mathbf{v} = \langle 1, 1 \rangle$$

$$2\mathbf{v} = \langle 2, 2 \rangle$$

$$\frac{1}{2}\mathbf{v} = \langle \frac{1}{2}, \frac{1}{2} \rangle$$

$$\mathbf{v} = \langle 1, 1 \rangle$$

$$-\mathbf{v} = \langle -1, -1 \rangle$$

$$-2\mathbf{v} = \langle -2, -2 \rangle$$

Vector Subtraction

$$\mathbf{u} - \mathbf{v} = \mathbf{u} + (-1)\mathbf{v}$$

Vector Subtraction - Spoiler

You can compute $\mathbf{u} - \mathbf{v}$ by *componentwise subtraction*:

$$\langle 3, 1 \rangle - \langle -1, 2 \rangle = \langle 4, -1 \rangle$$

Vector Algebra

We've seen three operations on vectors: addition, scalar multiplication, and subtraction. Here are some basic rules for how these operations interact (see your text, p. 802, and know these properties!)

Properties of Vectors If \mathbf{a} , \mathbf{b} , and \mathbf{c} are vectors, and \mathbf{c} , \mathbf{d} are scalars:

$$a + b = b + a$$
 $a + (b + c) = (a + b) + c$
 $a + 0 = a$ $a + (-a) = 0$
 $c(a + b) = ca + cb$ $(c + d)a = ca + da$
 $(cd)a = c(da)$ $1a = a$

Components

Two- and three-dimensional vectors can be specified by their components:

Components

Two- and three-dimensional vectors can be specified by their components:

$$\mathbf{a} = \langle a_1, a_2 \rangle$$

Components

Two- and three-dimensional vectors can be specified by their components:

$$\mathbf{a} = \langle a_1, a_2 \rangle$$

$$\mathbf{a} = \langle a_1, a_2, a_3 \rangle$$

Vector Operations in Components

• The vector \overrightarrow{AB} from $A(x_1, y_1, z_1)$ to $B(x_2, y_2, z_2)$ has components

$$\overrightarrow{AB} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$$

• The **length** of a two-dimensional vector $\mathbf{a} = \langle a_1, a_2 \rangle$ is

$$|\mathbf{a}| = \sqrt{a_1^2 + a_2^2}$$

• The **length** of a three-dimensional vector $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ is

$$|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

Vector Operations in Components

If
$$\mathbf{a}=\langle a_1,a_2\rangle$$
 and $\mathbf{b}=\langle b_1,b_2\rangle$, then:
$$\begin{aligned} \mathbf{a}+\mathbf{b}&=\langle a_1+b_1,a_2+b_2\rangle\\ \mathbf{a}-\mathbf{b}&=\langle a_1-b_1,a_2-b_2\rangle\\ c\mathbf{a}&=\langle ca_1,ca_2\rangle \end{aligned}$$

What are the corresponding rules for three-dimensional vectors?

If
$$\mathbf{a} = \langle 2, 1, 2 \rangle$$
 and $\mathbf{b} = \langle 3, -1, 5 \rangle$, find:

- a − b
- 2a + 3b
- |a − b|

Standard Basis Vectors

Every three-dimensional vector can be expressed in terms of the **standard basis vectors**

$$\mathbf{i} = \langle 1, 0, 0 \rangle, \quad \mathbf{j} = \langle 0, 1, 0 \rangle, \quad \mathbf{k} = \langle 0, 0, 1 \rangle$$

If $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$, then another way of writing \mathbf{a} is

$$a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}$$

The vectors **i**, **j**, **k** have length 1. Any such vector is called a *unit* vector.

Unit Vectors

You can make any nonzero vector a unit vector if you scalar multiply by the inverse of its length.

Find a unit vector in the direction of the vector $\mathbf{i} + 2\mathbf{j}$

Find a unit vector in the direction of the vector $\mathbf{i} + \mathbf{j} + \mathbf{k}$

- 1. A quarterback throws a football with an angle of elevation of 40° and a speed of 60 ft/sec. Find the horizontal and vertical components of the velocity.
- 2. A crane suspends a 500 lb steel beam horizontally by support cables. Each support cable makes an angle of 60° with the beam. The cables can withstand a tension of up to 275 pounds. Would you feel safe standing below this rig?
- 3. A boatman wants to cross a canal that is 3 km wide and wants to land at a point 2 km upstream from his starting point. The current in the canal flows at 3.5 km/hr and the speed of his boat is 13 km/hr.
 - (a) In what direction should he steer?
 - (b) How long will the trip take?

Lecture Review

- We saw that vectors are *displacements* or instructions for moving from one point to another in the plane or in space
- We learned the operations of vector addition, vector subtraction, and scalar multiplication
- We learned how to express vectors in terms of components
- We learned about the unit vectors i, j, and k and how to form a unit vector from any nonzero vector v: multiply v by the recipricol of its length