Math 213 - Double Integrals in Polar Coordinates

Peter A. Perry

University of Kentucky

March 4, 2019

Homework

- Exam II Review Session is tonight in CP 139, 6-8 PM
- Exam II takes place this Wednesday in CB 106, 5-7 PM and will cover 14.1, 14.3-14.8, 15.1-15.2
- Webwork B8 on 15.1-15.2 is due Friday March 8
- Practice problems for 15.3 are 1-4, 5-31 (odd), 35, 37
- Webwork C1 on 15.3 will be due Friday March 8

Unit II: Differential Calculus of Several Variables

Lecture 12	Functions of Several Variables
Lecture 13	Partial Derivatives
Lecture 14	Tangent Planes and Linear Approximation
Lecture 15	The Chain Rule
Lecture 16	Directional Derivatives and the Gradient
Lecture 17	Maximum and Minimum Values, I
Lecture 18	Maximum and Minimum Values, II
Lecture 19	Lagrange Multipliers
Lecture 20	Double Integrals
Lecture 21	Double Integrals over General Regions
Lecture 22	Double Integrals in Polar Coordinates
Lecture 23	Exam II Review

Goals of the Day

- Review Polar Coordinates, introduce Polar Rectangles
- Learn how to compute double integrals over polar rectangles
- Learn how to compute double integrals over polar regions
- Learn to compute volumes using polar integrals

Reality Check

	Calculus I	Calculus III
Riemann sum	$\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x$	$\sum_{i, j=1}^{n} f\left(x_{i}^{*}, y_{j}^{*}\right) \Delta A$
Riemann Integral	$\int_{a}^{b} f(x) d x$	$\iint_{D} f(x, y) d A$
Way of computing	$F(b)-F(a)$	Iterated Integral
Interpretation	Area under a curve	Volume under a surface

Review of Polar Coordinates

Recall that

$$
r^{2}=x^{2}+y^{2}, \quad \tan \theta=\frac{y}{x}
$$

and

$$
x=r \cos \theta, \quad y=r \sin \theta
$$

How would you describe the regions at left in polar coordinates?

Polar Rectangles

A polar rectangle is a region

$$
R=\{(r, \theta): a \leq r \leq b, \quad \alpha \leq \theta \leq \beta\}
$$

Polar Rectangles

A polar rectangle is a region

$$
R=\{(r, \theta): a \leq r \leq b, \quad \alpha \leq \theta \leq \beta\}
$$

Polar Rectangles

A polar rectangle is a region

$$
R=\{(r, \theta): a \leq r \leq b, \quad \alpha \leq \theta \leq \beta\}
$$

Polar Rectangles

A polar rectangle is a region

$$
R=\{(r, \theta): a \leq r \leq b, \quad \alpha \leq \theta \leq \beta\}
$$

Like an ordinary rectangle a polar rectangle can be divided into subrectangles

Polar Rectangles

A polar rectangle is a region

$$
R=\{(r, \theta): a \leq r \leq b, \quad \alpha \leq \theta \leq \beta\}
$$

Like an ordinary rectangle a polar rectangle can be divided into subrectangles

A small polar rectangle has area

$$
\Delta A \simeq r \Delta r \Delta \theta
$$

Integrals Over Polar Rectangles

The double integral $\iint_{R} f(x, y) d A$ is a limit of Riemann sums:

$$
\sum_{i, j=1}^{n} f\left(r_{i}^{*} \cos \theta_{j}^{*}, r_{i}^{*} \sin \theta_{j}^{*}\right) r_{j} \Delta r \Delta \theta
$$

Rectangle $R_{i j}$ is given by

$$
\begin{gathered}
R_{i j}=\left\{(r, \theta): r_{i-1} \leq r \leq r_{i}, \theta_{j-1} \leq \theta \leq \theta_{j}\right\} \\
r_{i}=a+i \Delta r \quad, \theta_{j}=\alpha+j \Delta \theta
\end{gathered}
$$

where

$$
\Delta r=\frac{b-a}{n}, \quad \Delta \theta=\frac{\beta-\alpha}{n}
$$

In the limit this leads to an iterated integral

$$
\int_{\alpha}^{\beta} \int_{a}^{b} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

Integrals Over Polar Rectangles

Double Integral In Polar Coordinates The integral of a continuous function $f(x, y)$ over a polar rectangle R given by $a \leq r \leq b$, $\alpha \leq r \leq \beta$, is

$$
\iint_{R} f(x, y) d A=\int_{\alpha}^{\beta} \int_{a}^{b} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

1. Find $\iint_{R}(2 x-y) d A$ if R is the region in the first quadrant bounded by the circle $x^{2}+y^{2}=4$ and the lines $x=0$ and $y=x$.
2. Find $\iint_{R} e^{-x^{2}-y^{2}} d A$ if D is the region bounded by the semicircle $x=\sqrt{4-y^{2}}$ and the y-axis.

Integrals over Polar Regions

If f is continuous over a polar region of the form

$$
D=\left\{(r, \theta): \alpha \leq \theta \leq \beta, h_{1}(\theta) \leq r \leq h_{2}(\theta)\right\}
$$

then

$$
\begin{aligned}
& \iint_{D} f(x, y) d A= \\
& \quad \int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} f(r \cos \theta, r \sin \theta) r d r d \theta
\end{aligned}
$$

Integrals over Polar Regions

If f is continuous over a polar region of the form
$D=\left\{(r, \theta): \alpha \leq \theta \leq \beta, h_{1}(\theta) \leq r \leq h_{2}(\theta)\right\}$
then

$$
\begin{aligned}
& \iint_{D} f(x, y) d A= \\
& \quad \int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} f(r \cos \theta, r \sin \theta) r d r d \theta
\end{aligned}
$$

Find the area of one loop of the rose

$$
r=\cos 3 \theta
$$

Volumes of Solids

Find the volume under the paraboloid

$$
z=x^{2}+y^{2}
$$

and above the disc

$$
x^{2}+y^{2}<25
$$

1. Describe the disc in polar coordinates
2. Transform $f(x, y)$ to polar coordinates

Volumes of Solids

Find the volume inside the sphere

$$
x^{2}+y^{2}+z^{2}=16
$$

and outside the cylinder

$$
x^{2}+y^{2}=4
$$

