Math 213 - Triple Integrals - Cylindrical Coordinates

Peter A. Perry
University of Kentucky

March 20, 2019

Homework

- Webwork C2 on 15.3 and 15.6 is due tonight!
- Re-read section 15.7 and read section 15.8 for Friday
- Practice problems for 15.7 are 1-13 (odd), 17-21 (odd)
- You will have a quiz on sections 15.3 (double integrals in polar coordinates) and 15.6 (triple integrals) tomorrow

Unit III: Integral Calculus, Vector Fields

$\begin{array}{ll}\text { Lecture 24 } & \text { Triple Integrals } \\ \text { Lecture 25 } & \text { Triple Integrals, Continued } \\ \text { Lecture 26 } & \text { Triple Integrals - Cylindrical Coordinates } \\ \text { Lecture 27 } & \text { Triple Integrals - Spherical Coordinates } \\ \text { Lecture 28 } & \text { Change of Variables for Multiple Integrals, I } \\ \text { Lecture 29 } & \text { Change of Variable for Multiple Integrals, II } \\ & \\ \text { Lecture 30 } & \text { Vector Fields } \\ \text { Lecture 31 } & \text { Line Integrals (Scalar Functions) } \\ \text { Lecture 32 } & \text { Line Integrals (Vector Functions) } \\ \text { Lecture 33 } & \text { Fundamental Theorem for Line Integrals } \\ \text { Lecture 34 } & \text { Green's Theorem } \\ \text { Lecture 35 } & \text { Exam III Review }\end{array}$

Goals of the Day

- Understand how to describe regions in xyz space with cylindrical coordinates
- Understand how to set up triple integrals as iterated integrals in cylindrical coordinates

Cylindrical Coordinates

Polar coordinates (r, θ) locate points in the $x y$ plane

Cylindrical Coordinates

Polar coordinates (r, θ) locate points in the $x y$ plane

Add the z-coordinate to polar coordi-
 nates and you get cylindrical coordinates

Cylindrical Coordinates

Recall conversions to and from polar coordinates:

$$
\begin{gathered}
r=\sqrt{x^{2}+y^{2}}, \quad \tan \theta=y / x \\
x=r \cos \theta, \quad y=r \sin \theta
\end{gathered}
$$

Cylindrical Coordinates

Recall conversions to and from polar coordinates:

$$
\begin{gathered}
r=\sqrt{x^{2}+y^{2}}, \quad \tan \theta=y / x \\
x=r \cos \theta, \quad y=r \sin \theta
\end{gathered}
$$

1. Find the cylindrical coordinates of the point $(-1,1,1)$
2. Find the cyindrical coordinates of the point $(-2,2 \sqrt{3}, 3)$
3. Find the rectangular coordinates of the point $(4, \pi / 3,-2)$

Equations and Regions in Cylindrical Coordinates

1. Identify the polar curve $r=2 \sin \theta$

Equations and Regions in Cylindrical Coordinates

1. Identify the polar curve $r=2 \sin \theta$

Equations and Regions in Cylindrical Coordinates

1. Identify the polar curve $r=2 \sin \theta$
2. Identify the surface $r=2 \sin \theta$

Equations and Regions in Cylindrical Coordinates

1. Identify the polar curve $r=2 \sin \theta$
2. Identify the surface $r=2 \sin \theta$

Equations and Regions in Cylindrical Coordinates

1. Identify the polar curve $r=2 \sin \theta$
2. Identify the surface $r=2 \sin \theta$
3. Write the equation

$$
2 x^{2}+2 y^{2}-z^{2}=4
$$

in cylindrical coordinates

Equations and Regions in Cylindrical Coordinates

1. Identify the polar curve $r=2 \sin \theta$
2. Identify the surface $r=2 \sin \theta$
3. Write the equation

$$
2 x^{2}+2 y^{2}-z^{2}=4
$$

in cylindrical coordinates
4. Sketch the solid described by the inequalities $0 \leq \theta \leq \pi / 2$, $r \leq z \leq 2$

Equations and Regions in Cylindrical Coordinates

1. Identify the polar curve $r=2 \sin \theta$
2. Identify the surface $r=2 \sin \theta$
3. Write the equation

$$
2 x^{2}+2 y^{2}-z^{2}=4
$$

in cylindrical coordinates
4. Sketch the solid described by the inequalities $0 \leq \theta \leq \pi / 2$, $r \leq z \leq 2$

Triple Integrals in Cylindrical Coordinates

In polar coordinates

$$
d A=r d r d \theta
$$

So, in cylindrical coordinates,

$$
d V=r d r d \theta d z=r d z d r d \theta
$$

If E is the region

$$
E=\left\{(x, y, z):(x, y) \in D, u_{1}(x, y) \leq z \leq u_{2}(x, y)\right\}
$$

then

$$
\iiint_{E} f(x, y, z) d V=\iint_{D}\left(\int_{u_{1}(x, y)}^{u_{2}(x, y)} f(x, y, z) d z\right) d A
$$

If we can describe D in polar coordinates:

$$
D=\left\{(r, \theta): \alpha \leq \theta \leq \beta, h_{1}(\theta) \leq r \leq h_{2}(\theta)\right\}
$$

then we can evaluate

$$
\iiint_{E} f(x, y, z) d V=\int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} \int_{u_{1}(r \cos \theta, r \sin \theta)}^{u_{2}(r \cos \theta, r \sin \theta)} f(r \cos \theta, r \sin \theta, z) r d z d r d \theta
$$

Step by Step

$$
\iiint_{E} f(x, y, z) d V=\int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} \int_{u_{1}(r \cos \theta, r \sin \theta)}^{u_{2}(r \cos \theta, r \sin \theta)} f(r \cos \theta, r \sin \theta, z) r d z d r d \theta
$$

This formula summarizes a multi-step process. If

$$
E=\left\{(x, y, z):(x, y) \in D, u_{1}(x, y) \leq z \leq u_{2}(x, y)\right\}
$$

then, to use the formula:

1. Substitute $x=r \cos \theta, y=r \sin \theta$ into u_{1} and u_{2} to find the limits of the inmost integral
2. Substitute $x=r \cos \theta, y=r \sin \theta$ into the formula for $f(x, y, z)$ to rewrite f as a function of r, θ, and z
3. After making these substitutions, evaluate the triple iterated integral

Triple Integrals in Cylindrical Coordinates

$$
\iiint_{E} f(x, y, z) d V=\int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} \int_{u_{1}(r \cos \theta, r \sin \theta)}^{u_{2}(r \cos \theta, r \sin \theta)} f(r \cos \theta, r \sin \theta, z) r d z d r d \theta
$$

1. Find $\iiint_{E} z d V$ where E is enclosed by the paraboloid

$$
z=x^{2}+y^{2}
$$

and the plane $z=4$

Triple Integrals in Cylindrical Coordinates

$$
\iiint_{E} f(x, y, z) d V=\int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} \int_{u_{1}(r \cos \theta, r \sin \theta)}^{u_{2}(r \cos \theta, r \sin \theta)} f(r \cos \theta, r \sin \theta, z) r d z d r d \theta
$$

1. Find $\iiint_{E} z d V$ where E is enclosed by the paraboloid

$$
z=x^{2}+y^{2}
$$

and the plane $z=4$
2. Find $\iiint_{E}(x-y) d V$ if E is the solid which lies between the cylinders

$$
x^{2}+y^{2}=1, \quad x^{2}+y^{2}=16
$$

above the $x y$ plane, and below the plane $z=y+4$.

