◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Math 213 - Triple Integrals - Spherical Coordinates

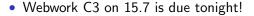
Peter A. Perry

University of Kentucky

March 22, 2019

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Homework



- Re-read section 15.8 and read section 15.9 for Monday
- Practice problems for 15.8 are 1-37 (odd)

Unit III: Integral Calculus, Vector Fields

Lecture 24	Triple Integrals
Lecture 25	Triple Integrals, Continued
Lecture 26	Triple Integrals - Cylindrical Coordinates
Lecture 27	Triple Integrals - Spherical Coordinates
Lecture 28	Change of Variables for Multiple Integrals, I
Lecture 29	Change of Variable for Multiple Integrals, II

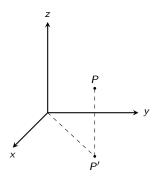
- Lecture 30 Vector Fields
- Lecture 31 Line Integrals (Scalar Functions)
- Lecture 32 Line Integrals (Vector Functions)
- Lecture 33 Fundamental Theorem for Line Integrals
- Lecture 34 Green's Theorem

Lecture 35 Exam III Review

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Goals of the Day

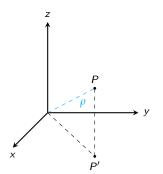
- Know how to locate points and describe regions in spherical coordinates
- Know how to evaluate triple integrals in spherical coordinates



The spherical coordinates (ρ, θ, ϕ) of a point *P* in three-dimensional space with projection *P'* on the *xy*-plane are:

・ロト ・ 一 ト ・ モト ・ モト

э.

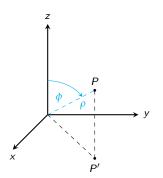


The spherical coordinates (ρ, θ, ϕ) of a point *P* in three-dimensional space with projection *P'* on the *xy*-plane are:

•
$$\rho = \sqrt{x^2 + y^2 + z^2}$$
, the distance $|\overrightarrow{OP}|$

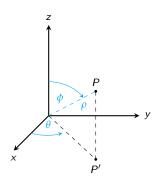
(日)、

э



The spherical coordinates (ρ, θ, ϕ) of a point *P* in three-dimensional space with projection *P'* on the *xy*-plane are:

- $\rho = \sqrt{x^2 + y^2 + z^2}$, the distance $|\overrightarrow{OP}|$
- φ, the angle that the vector *OP* makes with the z-axis



The spherical coordinates (ρ, θ, ϕ) of a point *P* in three-dimensional space with projection *P'* on the *xy*-plane are:

- $\rho = \sqrt{x^2 + y^2 + z^2}$, the distance $|\overrightarrow{OP}|$
- φ, the angle that the vector *OP* makes with the z-axis
- θ, the angle that the vector OP' makes with the x-axis

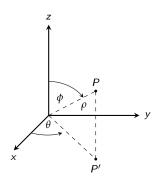
Cartesian to Spherical and Back Again

Going over:

$$\begin{split} \rho &= \sqrt{x^2 + y^2 + z^2} \\ \tan \theta &= \frac{y}{x} \\ \cos \phi &= \frac{z}{\rho} \end{split}$$

・ロト ・聞ト ・ヨト ・ヨト

æ

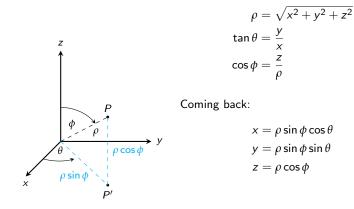


イロト 不得 トイヨト イヨト

3

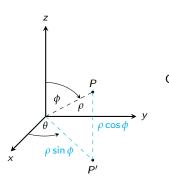
Cartesian to Spherical and Back Again

Going over:



Cartesian to Spherical and Back Again

Going over:



 $\rho = \sqrt{x^2 + y^2 + z^2}$ $\tan \theta = \frac{y}{x}$ $\cos \phi = \frac{z}{\rho}$

Coming back:

- $x = \rho \sin \phi \cos \theta$ $y = \rho \sin \phi \sin \theta$ $z = \rho \cos \phi$
- 1. Find the spherical coordinates of the point $(1, \sqrt{3}, 4)$
- 2. Find the cartesian coordinates of the point $(4, \pi/4, \pi/2)$

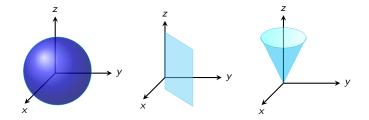
Regions in Spherical Coordinates

Match each of the following surfaces with its graph in xyz space

1.
$$\theta = c$$

2.
$$\rho = 5$$

3.
$$\phi = c$$
, $0 < c < \pi/2$



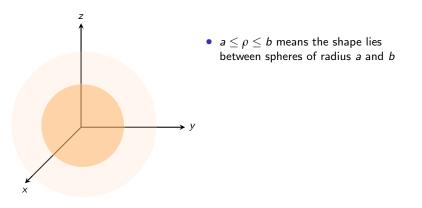
◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

A Spherical Wedge

The region

$$E = \{(
ho, heta, \phi) : a \le
ho \le b, \ a \le heta \le eta, \ c \le \phi \le d\}$$

is a spherical wedge. What does it look like?

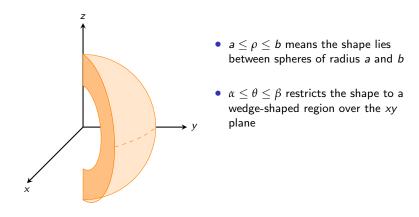


A Spherical Wedge

The region

$$E = \{(
ho, heta, \phi) : a \le
ho \le b, \ \alpha \le heta \le eta, \ c \le \phi \le d\}$$

is a spherical wedge. What does it look like?

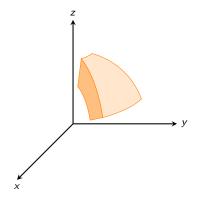


A Spherical Wedge

The region

$$E = \{(
ho, heta, \phi) : a \le
ho \le b, \ a \le heta \le eta, \ c \le \phi \le d\}$$

is a spherical wedge. What does it look like?



- a ≤ ρ ≤ b means the shape lies between spheres of radius a and b
- α ≤ θ ≤ β restricts the shape to a wedge-shaped region over the xy plane
- c ≤ φ ≤ d restricts the shape to the space between two cones about the z-axis

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Describing Regions in Spherical Coordinates

Can you sketch each of these regions?

- $1. \ 0 \leq \rho \leq 1, \quad 0 \leq \phi \leq \pi/6, \quad 0 \leq \theta \leq \pi$
- 2. $1 \le \rho \le 2$, $\pi/2 \le \phi \le \pi$
- 3. $2 \le \rho \le 4$, $0 \le \phi \le \pi/3$, $0 \le \theta \le \pi$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Triple Integrals in Spherical Coordinates

We need to find the volume of a small spherical wedge

Volume comes from

dV =

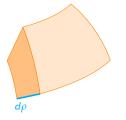
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Triple Integrals in Spherical Coordinates

We need to find the volume of a small spherical wedge

Volume comes from

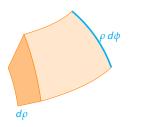
• Change in ρ



 $dV = d\rho$

Triple Integrals in Spherical Coordinates

We need to find the volume of a small spherical wedge

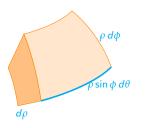


Volume comes from

- Change in ρ
- Change in ϕ

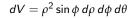
Triple Integrals in Spherical Coordinates

We need to find the volume of a small spherical wedge



Volume comes from

- Change in ρ
- Change in ϕ
- Change in θ



・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Triple Integrals in Spherical Coordinates

$$\iint_{E} f(x, y, z) \, dV = \int_{c}^{d} \int_{\alpha}^{\beta} \int_{a}^{b} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \, \rho^{2} \sin \phi \, d\rho \, d\theta \, d\phi$$

if E is a spherical wedge

$$E = \{(
ho, heta, \phi) : a \le
ho \le b, \ \alpha \le heta \le eta, \ c \le \phi \le d\}$$

- 1. Find $\iiint_E y^2 z^2 dV$ if *E* is the region above the cone $\phi = \pi/3$ and below the sphere $\rho = 1$
- 2. Find $\iiint_E y^2 dV$ if E is the solid hemisphere $x^2 + y^2 + z^2 \le 9$, $y \ge 0$
- 3. Find $\iiint_E \sqrt{x^2 + y^2 + z^2} \, dV$ if *E* lies above the cone $z = \sqrt{x^2 + y^2}$ and between the spheres $\rho = 1$ and $\rho = 2$