# Math 213 - Change of Variables, Part I 

Peter A. Perry

University of Kentucky

March 25, 2019

## Homework

- Re-read section 15.9 for Wednesday
- Practice problems for 15.9 are 1-19 (odd), 21, 23
- Webwork C4 on 15.8 is due on Wednesday Night
- You have a quiz on 15.7-15.8 on Thursday


## Unit III: Integral Calculus, Vector Fields

Lecture 24 Triple Integrals<br>Lecture 25 Triple Integrals, Continued<br>Lecture 26 Triple Integrals - Cylindrical Coordinates<br>Lecture 27 Triple Integrals - Spherical Coordinates<br>Lecture 28 Change of Variables for Multiple Integrals, I<br>Lecture 29 Change of Variable for Multiple Integrals, II<br>Lecture 30 Vector Fields<br>Lecture 31 Line Integrals (Scalar Functions)<br>Lecture 32 Line Integrals (Vector Functions)<br>Lecture 33 Fundamental Theorem for Line Integrals<br>Lecture 34 Green's Theorem<br>Lecture 35 Exam III Review

## Goals of the Day

- Understand what a transformation $T$ between two regions in the plane is
- Understand how to compute the Jacobian Matrix and Jacobian determinant of a transformation and understand what the Jacobian determinant measures
- Understand how to compute double integrals using the change of variables formula


## Preview: Calculus I versus Calculus III

If $x=g(u)$ maps $[c, d]$ to $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=\int_{c}^{d} f(g(u)) g^{\prime}(u) d u
$$

In other words,

$$
\int_{a}^{b} f(x) d x=\int_{c}^{d} f(x(u)) \frac{d x}{d u} d u
$$

If $x=g(u, v), y=h(u, v)$, and if the region $S$ in the $u v$ plane is mapped to the region $R$ in the $x y$ plane, then

$$
\iint_{R} f(x, y) d A=\iint_{S} f(x(u, v), y(u, v)) J(u, v) d u d v
$$

The Jacobian determinant

$$
J(u, v)=\left|\frac{\partial(x, y)}{\partial(u, v)}\right|
$$

measures how areas change under the map $(u, v) \mapsto(x, y)$.

## Transformations



The polar coordinate map

$$
x=r \cos \theta, \quad y=r \sin \theta
$$

defines a transformation $T: S \rightarrow R$
Before, we called $R$ a polar rectangle
Here are the corresponding sides of the rectangle in the $r \theta$ plane and the polar rectangle in the $x y$ plane:


## Transformations



The polar coordinate map

$$
x=r \cos \theta, \quad y=r \sin \theta
$$

defines a transformation $T: S \rightarrow R$
Before, we called $R$ a polar rectangle
Here are the corresponding sides of the rectangle in the $r \theta$ plane and the polar rectangle in the $x y$ plane:

- The line $r=a$


## Transformations



The polar coordinate map

$$
x=r \cos \theta, \quad y=r \sin \theta
$$

defines a transformation $T: S \rightarrow R$
Before, we called $R$ a polar rectangle
Here are the corresponding sides of the rectangle in the $r \theta$ plane and the polar rectangle in the $x y$ plane:

- The line $r=a$
- The line $\theta=\alpha$


## Transformations



The polar coordinate map

$$
x=r \cos \theta, \quad y=r \sin \theta
$$

defines a transformation $T: S \rightarrow R$
Before, we called $R$ a polar rectangle
Here are the corresponding sides of the rectangle in the $r \theta$ plane and the polar rectangle in the $x y$ plane:

- The line $r=a$
- The line $\theta=\alpha$
- The line $r=b$


## Transformations



The polar coordinate map

$$
x=r \cos \theta, \quad y=r \sin \theta
$$

defines a transformation $T: S \rightarrow R$
Before, we called $R$ a polar rectangle
Here are the corresponding sides of the rectangle in the $r \theta$ plane and the polar rectangle in the $x y$ plane:

- The line $r=a$
- The line $\theta=\alpha$
- The line $r=b$
- The line $\theta=\beta$


## Transformations



The polar coordinate map

$$
x=u \cos v, \quad y=u \sin v
$$

defines a transformation $T: S \rightarrow R$
Before, we called $R$ a polar rectangle
Here are the corresponding sides of the rectangle in the $u \theta$ plane and the polar rectangle in the $x y$ plane:


## Transformations



The polar coordinate map

$$
x=u \cos v, \quad y=u \sin v
$$

defines a transformation $T: S \rightarrow R$
Before, we called $R$ a polar rectangle
Here are the corresponding sides of the rectangle in the $u \theta$ plane and the polar rectangle in the $x y$ plane:

- The line $u=a$


## Transformations



The polar coordinate map

$$
x=u \cos v, \quad y=u \sin v
$$

defines a transformation $T: S \rightarrow R$
Before, we called $R$ a polar rectangle
Here are the corresponding sides of the rectangle in the $u \theta$ plane and the polar rectangle in the $x y$ plane:

- The line $u=a$
- The line $v=\alpha$


## Transformations



The polar coordinate map

$$
x=u \cos v, \quad y=u \sin v
$$

defines a transformation $T: S \rightarrow R$
Before, we called $R$ a polar rectangle
Here are the corresponding sides of the rectangle in the $u \theta$ plane and the polar rectangle in the $x y$ plane:

- The line $u=a$
- The line $v=\alpha$
- The line $u=b$


## Transformations



The polar coordinate map

$$
x=u \cos v, \quad y=u \sin v
$$

defines a transformation $T: S \rightarrow R$
Before, we called $R$ a polar rectangle
Here are the corresponding sides of the rectangle in the $u \theta$ plane and the polar rectangle in the $x y$ plane:

- The line $u=a$
- The line $v=\alpha$
- The line $u=b$
- The line $v=\beta$


## Transformations

The equations



## Transformations

The equations


$$
x=u^{2}-v^{2}, \quad y=2 u v
$$

defines a transformation $T: S \rightarrow R$

- $v=0,0 \leq u \leq 1$ maps to $0 \leq x \leq 1, y=0$



## Transformations

The equations


$$
x=u^{2}-v^{2}, \quad y=2 u v
$$

defines a transformation $T: S \rightarrow R$

- $v=0,0 \leq u \leq 1$ maps to $0 \leq x \leq 1, y=0$
- $u=1,0 \leq v \leq 1$ maps to the parametric curve $x=1-v^{2}, y=2 v$



## Transformations

The equations



$$
x=u^{2}-v^{2}, \quad y=2 u v
$$

defines a transformation $T: S \rightarrow R$

- $v=0,0 \leq u \leq 1$ maps to $0 \leq x \leq 1, y=0$
- $u=1,0 \leq v \leq 1$ maps to the parametric curve $x=1-v^{2}, y=2 v$
- $v=1,0 \leq u \leq 1$ maps to the parametric curve $x=u^{2}-1, y=2 u$


## Transformations

The equations



$$
x=u^{2}-v^{2}, \quad y=2 u v
$$

defines a transformation $T: S \rightarrow R$

- $v=0,0 \leq u \leq 1$ maps to $0 \leq x \leq 1, y=0$
- $u=1,0 \leq v \leq 1$ maps to the parametric curve $x=1-v^{2}, y=2 v$
- $v=1,0 \leq u \leq 1$ maps to the parametric curve $x=u^{2}-1, y=2 u$
- $u=0,0 \leq v \leq 1$ maps to

$$
-1 \leq x \leq 0, y=0
$$

## Transformations

1. Find the image of

$$
S=\{(u, v): 0 \leq u \leq 3,0 \leq v \leq 2\}
$$

under the transformation $x=2 u+3 v, y=u-v$
2. Find the image of the disc $u^{2}+v^{2} \leq 1$ under the transformation $x=a u$, $y=b v$

## The Jacobian

In one variable calculus, the way a transformation $x=g(u)$ changes lengths of interals is measured by $g^{\prime}(u)$ :

$$
\Delta x=g^{\prime}(u) \Delta u
$$



In two variable calculus, the way a transformation

$$
x=g(u, v), \quad y=h(u, v)
$$

changes areas is measured by the Jacobian determinant

$$
J(u, v)=\left|\begin{array}{ll}
\partial x / \partial u & \partial x / \partial v \\
\partial y / \partial u & \partial y / \partial v
\end{array}\right|, \quad \Delta A=|J(u, v)| \Delta u \Delta v
$$

We'll now see why this is the case...

## The Jacobian

A transformation $x=g(u, v), y=h(u, v)$ maps a small rectangle $S$ into a distorted rectangle $R$ through the rule

$$
\mathbf{r}(u, v)=g(u, v) \mathbf{i}+h(u, v) \mathbf{j}
$$




## The Jacobian

A transformation $x=g(u, v), y=h(u, v)$ maps a small rectangle $S$ into a distorted rectangle $R$ through the rule

$$
\mathbf{r}(u, v)=g(u, v) \mathbf{i}+h(u, v) \mathbf{j}
$$



$R$ has approximate area $\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| \Delta u \Delta v$ where

$$
\mathbf{r}_{u}=\frac{\partial x}{\partial u} \mathbf{i}+\frac{\partial y}{\partial u} \mathbf{j}, \quad \mathbf{r}_{v}=\frac{\partial x}{\partial v} \mathbf{i}+\frac{\partial y}{\partial v} \mathbf{j}
$$

## The Jacobian



$R$ has approximate area $\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| \Delta u \Delta v$ where

$$
\mathbf{r}_{u}=\frac{\partial x}{\partial u} \mathbf{i}+\frac{\partial y}{\partial u} \mathbf{j}, \quad \mathbf{r}_{v}=\frac{\partial x}{\partial v} \mathbf{i}+\frac{\partial y}{\partial v} \mathbf{j}
$$

Compute

$$
\mathbf{r}_{u} \times \mathbf{r}_{v}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & 0 \\
\frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & 0
\end{array}\right|=\frac{\partial x}{\partial u} \frac{\partial y}{\partial v}-\frac{\partial x}{\partial v} \frac{\partial y}{\partial u}
$$

## The Jacobian




The area of $R$ is approximately

$$
d A \simeq\left|\frac{\partial(x, y)}{\partial(u, v)}\right| \Delta u \Delta v
$$

where

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\partial x / \partial u & \partial x / \partial v \\
\partial y / \partial u & \partial y / \partial v
\end{array}\right|
$$

is the Jacobian determinant of the transformation

## The Jacobian

Find the Jacobian determinant of the following transformations.

1. $x=2 u+3 v, y=u-v$
2. $x=a u, y=b v$
3. $x=u^{2}-v^{2}, y=2 u v$

## Area Change in Polar Coordinates

Consider the transformation $x=u \cos v, \quad y=u \sin v$



$$
\left(\begin{array}{ll}
\partial x / \partial u & \partial x / \partial v \\
\partial y / \partial u & \partial y / \partial v
\end{array}\right)=\left(\begin{array}{cc}
\cos (v) & -u \sin (v) \\
\sin (v) & u \cos (v)
\end{array}\right)
$$

so

$$
J(u, v)=\left|\begin{array}{cc}
\cos (v) & \sin (v) \\
-u \sin (v) & u \cos (v)
\end{array}\right|=u
$$

## Notation

The Jacobian Determinant of a transformation $x=g(u, v), y=h(u, v)$ is denoted

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|
$$

The notation

$$
\left|\frac{\partial(x, y)}{\partial(u, v)}\right|
$$

denotes the absolute value of this determinant.

## Change of Variables Formula

If the transformation $x=g(u, v), y=h(u, v)$ maps a region $S$ in the $u v$-plane to a region $R$ in the $x y$ plane:

$$
\begin{aligned}
\iint_{R} f(x, y) d A & \simeq \sum_{i=1}^{n} \sum_{j=1}^{n} f\left(x_{i}, y_{j}\right) \Delta A \\
& \simeq \sum_{i=1}^{n} \sum_{j=1}^{n} f\left(g\left(u_{i}, v_{j}\right), h\left(u_{i}, v_{j}\right)\right)\left|\frac{\partial(x, y)}{\partial(u, v)}\right| \Delta u \Delta v \\
& \iint_{S} f(g(u, v), h(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v
\end{aligned}
$$

Change of Variables in a Double Integral If $T$ is a one-to-one transformation with nonzero Jacobian and $T: S \rightarrow R$, then

$$
\iint_{R} f(x, y) d A=\iint_{S} f(x(u, v), y(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v
$$

## Change of Variables Formula

Change of Variables in a Double Integral If $T$ is a one-to-one transformation with nonzero Jacobian and $T: S \rightarrow R$, then

$$
\iint_{R} f(x, y) d A=\iint_{S} f(x(u, v), y(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v
$$

1. Use the transformation $x=2 u+v, y=u+2 v$ to find $\iint_{R}(x-3 y) d A$ if $R$ is the triangular region with vertices $(0,0),(2,1)$ and $(1,2)$
2. Find $\iint_{R}(x+y) e^{x^{2}-y^{2}} d A$ if $R$ is the rectangle enclosed by $x-y=0$, $x-y=2, x+y=0$, and $x+y=3$.
