Math 213 - Change of Variables, Part II

Peter A. Perry
University of Kentucky

March 27, 2019

Homework

- Read section 16.1 for Friday
- Practice problems for 15.9 are 1-19 (odd), 21, 23
- Webwork C4 on 15.8 is due tonight
- You have a quiz on 15.7-15.8 tomorrow

Unit III: Integral Calculus, Vector Fields

Lecture 24 Triple Integrals
Lecture 25 Triple Integrals, Continued
Lecture 26 Triple Integrals - Cylindrical Coordinates
Lecture 27 Triple Integrals - Spherical Coordinates
Lecture 28 Change of Variables for Multiple Integrals, I
Lecture 29 Change of Variable for Multiple Integrals, II
Lecture 30 Vector Fields
Lecture 31 Line Integrals (Scalar Functions)
Lecture 32 Line Integrals (Vector Functions)
Lecture 33 Fundamental Theorem for Line Integrals
Lecture 34 Green's Theorem
Lecture 35 Exam III Review

Goals of the Day

- Understand what a transformation T between two regions in space is
- Understand how to compute the Jacobian Matrix and Jacobian determinant of a transformation and understand what the Jacobian determinant measures
- Understand how to compute triple integrals using the change of variables formula

Change of Variable: $u v \rightarrow x y$

If $x=g(u, v), y=h(u, v)$, and if the region S in the $u v$ plane is mapped to the region R in the xy plane, then

$$
\iint_{R} f(x, y) d A=\iint_{S} f(x(u, v), y(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v
$$

The Jacobian determinant

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|
$$

measures how areas change under the map $(u, v) \mapsto(x, y)$.
A way to remember the change of variables formula

$$
d A=\underbrace{\left|\frac{\partial(x, y)}{\partial(u, v)}\right|}_{\text {Area change factor }} \underbrace{d u d v}_{d A \text { in } u v \text { plane }}
$$

Example: Change of Variable $u v$ to $x y$

$$
\iint_{R} f(x, y) d A=\iint_{S} f(x(u, v), y(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v
$$

Problem Find $\iint_{R}(x-3 y) d A$ if R is the triangular region with vertices $(0,0)$, $(2,1)$ and $(1,2)$. Use the transformation $x=2 u+v, y=u+2 v$.

Hint: You'll need to find u and v in terms of x and y to find the region S

Example: Change of Variable $u v$ to $x y$

$$
\iint_{R} f(x, y) d A=\iint_{S} f(x(u, v), y(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v
$$

Problem: Find $\iint_{R}(x+y) e^{x^{2}-y^{2}} d A$ if R is the rectangle enclosed by $x-y=0, x-y=2, x+y=0$, and $x+y=3$.

What coordinates u and v are natural in this problem?

Example: Change of Variable $u v$ to $x y$

$$
\iint_{R} f(x, y) d A=\iint_{S} f(x(u, v), y(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v
$$

Problem: Find $\iint_{R}(x+y) e^{x^{2}-y^{2}} d A$ if R is the rectangle enclosed by $x-y=0, x-y=2, x+y=0$, and $x+y=3$.

What coordinates u and v are natural in this problem?

Preview: Change of Variable: $u v w$ to $x y z$

If

$$
x=g(u, v, w), \quad y=h(u, v, w), \quad z=k(u, v, w)
$$

and the region S in $u v w$ space is mapped to R in $x y z$ space, then

$$
\begin{aligned}
& \iiint_{R} f(x, y, z) d V= \\
& \quad \iiint_{S} f(x(u, v, w), y(u, v, w), z(u, v, w))\left|\frac{\partial(x, y, z)}{\partial(u, v, w)}\right| d u d v d w
\end{aligned}
$$

where

$$
\frac{\partial(x, y, z)}{\partial(u, v, w)}=\left|\begin{array}{lll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\
\frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w}
\end{array}\right|
$$

Cylindrical and Spherical Coordinates

Recall that the Jacobian determinant is

$$
\frac{\partial(x, y, z)}{\partial(u, v, w)}=\left|\begin{array}{lll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\
\frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w}
\end{array}\right|
$$

Find the Jacobian determinant if:
(1) $x=u \cos v, \quad y=u \sin v, \quad z=w$ (cylindrical)
(2) $x=u \sin w \cos v, \quad y=u \sin w \sin v, \quad z=u \cos w$ (spherical)

What's the connection with these formulas and formulas for integration in cylindrical and spherical coordinates?

Polar Coordinates

The transformation

$$
x=u \cos v, y=u \sin v
$$

maps a rectangle S in the $u v$ plane to a polar rectangle R in the xy plane The Jacobian of this transformation is

$$
\left|\begin{array}{cc}
\cos v & -u \sin v \\
\sin v & u \cos v
\end{array}\right|=u
$$

Polar Coordinates

The transformation

$$
x=u \cos v, y=u \sin v
$$

maps a rectangle S in the $u v$ plane to a polar rectangle R in the xy plane The Jacobian of this transformation is

$$
\left|\begin{array}{cc}
\cos v & -u \sin v \\
\sin v & u \cos v
\end{array}\right|=u
$$

Polar Coordinates

The transformation

$$
x=u \cos v, y=u \sin v
$$

maps a rectangle S in the $u v$ plane to a polar rectangle R in the xy plane The Jacobian of this transformation is

$$
\left|\begin{array}{cc}
\cos v & -u \sin v \\
\sin v & u \cos v
\end{array}\right|=u
$$

Polar Coordinates

The transformation

$$
x=u \cos v, y=u \sin v
$$

maps a rectangle S in the $u v$ plane to a polar rectangle R in the xy plane The Jacobian of this transformation is

$$
\left|\begin{array}{cc}
\cos v & -u \sin v \\
\sin v & u \cos v
\end{array}\right|=u
$$

Polar Coordinates

The transformation

$$
x=u \cos v, y=u \sin v
$$

maps a rectangle S in the $u v$ plane to a polar rectangle R in the xy plane The Jacobian of this transformation is

$$
\left|\begin{array}{cc}
\cos v & -u \sin v \\
\sin v & u \cos v
\end{array}\right|=u
$$

Cylindrical Coordinates

The transformation

$$
x=u \cos v, \quad y=u \sin v, \quad z=w
$$

maps a box in the $u v w$ plane to a 'cylindrical wedge' in xyz space

The Jacobian of this transformation is

$$
\left|\begin{array}{ccc}
\cos v & -u \sin v & 0 \\
\sin v & u \cos v & 0 \\
0 & 0 & 1
\end{array}\right|=u
$$

Spherical Coordinates

The transformation

$$
\begin{aligned}
& x=u \sin (w) \cos (v) \\
& y=u \sin (w) \sin (v) \\
& z=u \cos (w)
\end{aligned}
$$

maps a box in the $u v w$ plane to a 'spherical wedge' in xyz space

The Jacobian of this transformation is

$$
u^{2} \sin (w)
$$

Volume of an Ellipsoid

Find the volume enclosed by the ellipsoid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

using the transformation

$$
x=a u, \quad y=b v, \quad z=c w
$$

