
Learning Goals Overview Scalar functions in the Plane Scalar Functions in Space

Math 213 - Line Integrals I

Peter A. Perry

University of Kentucky

April 1, 2019



Learning Goals Overview Scalar functions in the Plane Scalar Functions in Space

Homework

• Re-Read Section 16.2 for Wednesday

• Work on Stewart problems for 16.2: 1-21 (odd),
33-41 (odd), 49, 50

• Webwork C1 on section 16.1 is due Wednesday
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Unit IV: Vector Calculus

Lecture 24 Triple Integrals
Lecture 25 Triple Integrals, Continued
Lecture 26 Triple Integrals - Cylindrical Coordinates
Lecture 27 Triple Integrals - Spherical Coordinates
Lecture 28 Change of Variables for Multiple Integrals, I
Lecture 29 Change of Variable for Multiple Integrals, II

Lecture 30 Vector Fields
Lecture 31 Line Integrals (Scalar Functions)
Lecture 32 Line Integrals (Vector Functions)
Lecture 33 Fundamental Theorem for Line Integrals
Lecture 34 Green’s Theorem

Lecture 35 Exam III Review
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Goals of the Day

• Know how to compute line integrals of a scalar function in the
plane

• Know how to compute line integrals of a scalar function in
space



Learning Goals Overview Scalar functions in the Plane Scalar Functions in Space

Preview: Line Integrals

Our next topic will be integrals of scalar functions and vector functions over
curves in the plane and in space. If C is a curve in the plane or in space, we’ll
learn how to compute:

•
∫
C f (x , y) ds, the integral of a scalar function over a plane curve C

•
∫
C f (x , y , z) ds, the integral of a scalar function over a space curve C

•
∫
C F · dr, the integal of a vector function F(x , y) over a plane curve C

•
∫
C F · dr, the integral of a vector function F(x , y , z) over a space curve C

In all cases, we’ll reduce these to Calculus I and II type integrals by
parameterizing the curve C . We’ll also learn how to compute integrals like

•
∫
C f (x , y) dx

•
∫
C f (x , y) dy
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Parameterizing Paths

x

y

x

y

Parameterize the following paths:

1. The first planar path shown on
the left

2. The second planar path shown on
the left

3. The path connecting (0, 0, 0) to
(1, 0, 1)

4. The path connecting (1, 0, 1) to
(1, 2, 0)
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The Integral of a Scalar Function over a Plane Curve

If C is a plane curve, the line integral of f along C is∫
C
f (x , y) ds = lim

n→∞

n

∑
i=1

f (x∗i , y∗i )∆si

where we approximate the curve by n line segments of length ∆si

As a practical matter, if C is parameterized by (x(t), y(t)) for a ≤ t ≤ b,

ds =

√(
dx

dt

)2

+

(
dy

dt

)2

dt

so ∫
C
f (x , y) ds =

∫ b

a
f (x(t), y(t))

√(
dx

dt

)2

+

(
dy

dt

)2

dt
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The Integral of a Scalar Function over a Plane Curve

if C is parameterized by (x(t), y(t)) for a ≤ t ≤ b, then

∫
C
f (x , y) ds =

∫ b

a
f (x(t), y(t))

√(
dx

dt

)2

+

(
dy

dt

)2

dt

1. Find
∫
C (x/y) ds if C is the curve x = t2, y = 2t for 0 ≤ t ≤ 3

2. Find
∫
C xy4 ds if C is the right half of the circle x2 + y2 = 16
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Line Integrals over Piecewise Smooth Curves

1−1

1−1

A curve C is piecewise smooth if it is a
union of smooth curves C1, . . .Cn. Some
examples are shown at left.

If C consists of seveal smooth compo-
nents, then∫

C
f (x , y) ds =

n

∑
i=1

∫
Ci

f (x , y) ds

Notice that each of these curves has
an orientation that determines how the
curve is parameterized–the parameteri-
zation should “follow the arrows.”

1. Find
∫
C xy ds if C is the first

curve shown at left.
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Another Kind of Line Integral

For later use, we’ll also need the line integral of f with respect to x and the
line integral of f with respect to y :

∫
C
f (x , y) dx =

∫ b

a
f (x(t), y(t))x ′(t) dt

∫
C
f (x , y) dy =

∫ b

a
f (x(t), y(t))y ′(t) dt

1. Find
∫
C ex dx if C is the arc of the curve x = y3 from (−1,−1) to (1, 1)

2. Find
∫
C x2 dx + y2 dy if C is the arc of the circle x2 + y2 = 4 from (2, 0)

to (0, 2) followed by the line segment from (0, 2) to (4, 3)
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Summary of Line Integrals in the Plane

If C is a parameterized curve (x(t), y(t)) where a ≤ t ≤ b:

∫
C
f (x , y) dx =

∫ b

a
f (x(t), y(t))x ′(t) dt

∫
C
f (x , y) dy =

∫ b

a
f (x(t), y(t))y ′(t) dt

∫
C
f (x , y) ds =

∫ b

a
f (x(t), y(t))

√
(x ′(t)2 + y ′(t)2 dt
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Applications - Center of Mass

a

a

A wire of mass m and density ρ(x , y) along a
curve C has center of mass

x =
1

m

∫
C
xρ(x , y) ds

y =
1

m

∫
C
yρ(x , y) ds

A thin wire has the shape of the first quadrant
part of a circle with center at the origin and
radius a. If the density of the wire is

ρ(x , y) = kxy ,

find the mass and center of mass of the wire.
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Line Integrals in Space

If C is a space curve (x(t), y(t), z(t)) where a ≤ t ≤ b, then∫
C
f (x , y , z) ds =∫ b

a
f (x(t), y(t), z(t))

√
(x ′(t))2 + (y ′(t))2 + (z ′(t))2 dt

1. Find
∫
C (x

2 + y2 + z2) ds if C is the space curve
(x(t), y(t), z(t)) = (t, cos 2t, sin 2t) for 0 ≤ t ≤ 2π
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More Line Integrals in Space

Can you guess how to define
∫
C f (x , y , z) dx ,

∫
C f (x , y , z) dy , and∫

C f (x , y , z) dz?

1. Find
∫
C (x + z) dx +

∫
C (x + z) dy +

∫
C (x + y) dz if C consists of the

line segments from (0, 0, 0) to (1, 0, 1) and from (1, 0, 1) to (0, 1, 2)

x

y

z

(1, 0, 1)

(1, 2, 0)

(0, 0, 0)
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