Math 213 - Line Integrals II

Peter A. Perry
University of Kentucky

April 3, 2019

Homework

- Read Section 16.3 for Friday
- Work on Stewart problems for 16.2: 1-21 (odd), 33-41 (odd), 49, 50
- Webwork C6 on section 16.1 is due tonight!
- Study for Quiz \# 9 on 15.9 (change of variables) tomorrow
- Webwork C7 on section 16.2 is due Friday

Unit IV: Vector Calculus

Lecture 24 Triple Integrals
Lecture 25 Triple Integrals, Continued
Lecture 26 Triple Integrals - Cylindrical Coordinates
Lecture 27 Triple Integrals - Spherical Coordinates
Lecture 28 Change of Variables for Multiple Integrals, I
Lecture 29 Change of Variable for Multiple Integrals, II
Lecture 30 Vector Fields
Lecture 31 Line Integrals (Scalar Functions)
Lecture 32 Line Integrals (Vector Functions)
Lecture 33 Fundamental Theorem for Line Integrals
Lecture 34 Green's Theorem
Lecture 35 Exam III Review

Goals of the Day

- Know how to compute line integrals of a vector function in the plane and in space

Remember Space Curves?

A space curve is given by

$$
\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}
$$

The tangent vector to a space curve is

$$
\mathbf{r}^{\prime}(t)=x^{\prime}(t) \mathbf{i}+y^{\prime}(t) \mathbf{j}+z^{\prime}(t) \mathbf{k}
$$

Recall that $\mathbf{r}^{\prime}(t)$ is the velocity, and $\left|\mathbf{r}^{\prime}(t)\right|$ is the speed.
The unit tangent vector is

$$
\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\mathbf{r}(t)}
$$

Find the tangent vector and unit tangent vector to the curve

$$
\mathbf{r}(t)=\cos (t) \mathbf{i}+\sin (t) \mathbf{j}+t \mathbf{k}
$$

for $t=0, t=\pi / 2$, and $t=\pi$.

Recall that the work done by a constant force \mathbf{F} moving an object through a displacement \mathbf{D} is

$$
W=\mathbf{F} \cdot \mathbf{D}
$$

What if \mathbf{F} and the displacement \mathbf{D} vary as the force acts through a curve C ?

Write $\mathbf{D}=\mathbf{T} \Delta s$ where \mathbf{T} is the tangent vector and Δs is arc length.

Then

$$
\begin{aligned}
W & \simeq \sum_{i=1}^{n} \mathbf{F}\left(x_{i}^{*}, y_{i}^{*}, z_{i}^{*}\right) \cdot \mathbf{T}_{i} \Delta s \\
& \rightarrow \int_{C} \mathbf{F} \cdot \mathbf{T} d s
\end{aligned}
$$

How Do You Compute It?

The work done by a variable force \mathbf{F} moving a particle along a curve C is

$$
W=\int_{C} \mathbf{F} \cdot \mathbf{T} d s
$$

If C is parameterized by $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}$ for $a \leq t \leq b$:

$$
\mathbf{T}=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}
$$

and

$$
d s=\left|\mathbf{r}^{\prime}(t)\right| d t
$$

So

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot \mathbf{T} d s & =\int_{a}^{b} \mathbf{F}(x(t), y(t), z(t)) \cdot \frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}\left|\mathbf{r}^{\prime}(t)\right| d t \\
& =\int_{C} \mathbf{F}(x(t), y(t), z(t)) \cdot \mathbf{r}^{\prime}(t) d t
\end{aligned}
$$

This line integral is sometimes written

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

for short

Now You Try It

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t
$$

Find $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ if:

1. $\mathbf{F}(x, y)=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ and $\mathbf{r}(t)=t^{2} \mathbf{i}+t^{3} \mathbf{j}-2 t \mathbf{k}, 0 \leq t \leq 2$
2. $\mathbf{F}(x, y, z)=y z e^{x} \mathbf{i}+z x e^{y} \mathbf{j}+x y e^{z} \mathbf{k}$ and $\mathbf{r}(t)=\sin t \mathbf{i}+\cos t \mathbf{j}+\tan t \mathbf{k}$, $0 \leq t \leq \pi / 4$

Now You Try It

Find the work done by the force field

$$
\mathbf{F}(x, y)=x^{2} \mathbf{i}+x y \mathbf{j}
$$

on a particle that moves around the circle

$$
x^{2}+y^{2}=4
$$

oriented in the counterclockwise direction

Real Science

Steady current in a wire generates a magnetic field \mathbf{B} tangent to any circle that lies in the plane perpendicular to the wire centered on the wire. According to Ampere's law,

$$
\int_{C} \mathbf{B} \cdot d \mathbf{r}=\mu_{0} l
$$

where

- I is the net current flowing through the wire
- μ_{0} is a physical constant

What is the magnitude of the magnetic field at a distance r from the wire?

Summary

Arc length differential

$$
d s=\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}} d t
$$

Line integral with respect to arc length

$$
\int_{C} f(x, y, z) d s=\int_{a}^{b} f(x(t), y(t), z(t)) d s
$$

Line integral with respect to x, y, z

$$
\begin{aligned}
\int_{C} f(x, y, z) d x & =\int_{a}^{b} f(x(t), y(t), z(t)) x^{\prime}(t) d t \\
\int_{C} f(x, y, z) d y & =\int_{a}^{b} f(x(t), y(t), z(t)) y^{\prime}(t) d t \\
\int_{C} f(x, y, z) d y & =\int_{a}^{b} f(x(t), y(t), z(t)) z^{\prime}(t) d t
\end{aligned}
$$

Line integral of a vector field

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{a}^{b} \mathbf{F}(x(t), y(t), z(t)) \cdot \mathbf{r}^{\prime}(t) d t
$$

Chain Rule Puzzler

If $\mathbf{F}(x, y, z)$ is a vector field and $\mathbf{r}(t)=x(t), y(t), z(t))$ is a parameterized curve, what is

$$
\frac{d}{d t}[F(x(t), y(z), z(t))]
$$

in terms of ∇F and $\mathbf{r}^{\prime}(t)$?

Remember the Fundamental Theorem of Calculus?

What is

$$
\int_{a}^{b} \frac{d}{d t} F(t) d t ?
$$

Line Integral of a Gradient Vector Field

Suppose $\mathbf{F}=\nabla \phi$ for a potential function $\phi(x, y, z)$
Suppose $\mathbf{r}(t), a \leq t \leq b$ is a parameterized path C.
Is there a simple way to compute

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r} ?
$$

