Math 213 - Fundamental Theorem for Line Integrals

Peter A. Perry

University of Kentucky

April 5, 2019

Homework

- Read Section 16.4 for Monday
- Work on Stewart problems for 16.3: 1, 2, 3-9 (odd), 13-19 (odd), 23, 25, 31-35
- Homework C7 on section 16.2 is due tonight!

Unit IV: Vector Calculus

Lecture 24	Triple Integrals
Lecture 25	Triple Integrals, Continued
Lecture 26	Triple Integrals - Cylindrical Coordinates
Lecture 27	Triple Integrals - Spherical Coordinates
Lecture 28	Change of Variables for Multiple Integrals,
Lecture 29	Change of Variable for Multiple Integrals,
Lecture 30	Vector Fields
Lecture 31	Line Integrals (Scalar Functions)
Lecture 32	Line Integrals (Vector Functions)
Lecture 33	Fundamental Theorem for Line Integrals
Lecture 34	Green's Theorem
Lecture 35	Exam III Review

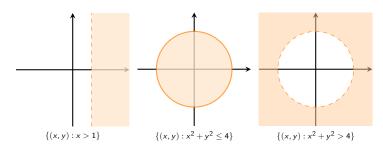
Goals of the Day

- Learn the Vocabulary for Section 16.3
- Learn the Fundamental Theorem for Line Integrals
- Learn what it means for a line integral to be independent of path
- Learn how to tell when a vector field \mathbf{F} is *conservative* and how to find the function f with $\nabla f = \mathbf{F}$

Vocabulary - Open Regions

open region A region D of \mathbb{R}^2 or \mathbb{R}^3 where for every point P in the region, there is a disc or sphere centered at P contained in D

Which of the following regions is open?



Chain Rule Puzzler

If f(x,y,z) is a function and $\mathbf{r}(t)=\langle x(t),y(t),z(t)\rangle$ is a parameterized curve, what is

$$\frac{d}{dt}\left[f(x(t),y(z),z(t))\right]$$

in terms of ∇f and $\mathbf{r}'(t)$?

Answer:
$$\nabla f(\mathbf{r}(t)) \cdot \mathbf{r}'(t)$$

Remember the Fundamental Theorem of Calculus?

What is

$$\int_a^b \frac{d}{dt} F(t) dt ?$$

(Remember the Net Change Theorem?)

Answer:
$$F(b) - F(a)$$

Line Integral of a Gradient Vector Field

Suppose $\mathbf{F} = \nabla f$ for a potential function f(x, y, z)

Suppose $\mathbf{r}(t)$, $a \le t \le b$ is a parameterized path C.

Is there a simple way to compute

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} \nabla f(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt = \int_{a}^{b} \frac{d}{dt} \left(f(\mathbf{r}(t)) \right) dt$$

like the one-variable "net change theorem"?

Answer: You bet!

Line Integral of a Gradient Vector Field

Theorem Suppose that $\mathbf{F}(\mathbf{r}) = \nabla f(\mathbf{r})$ is a gradient vector field, and C is a path parameterized by $\mathbf{r}(t)$, $a \le t \le b$. Then

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a))$$

How to think about the Fundamental Theorem for Line Integrals



The figure at the left shows a curve C and a contour map of a function f whose gradient is continuous. Find $\int_C \nabla f \cdot d\mathbf{r}$.

Hint: Think of f as a height function, and the contour plot as a contour map. The gradient gives the magnitude and direction of the greatest change in height at any given point.

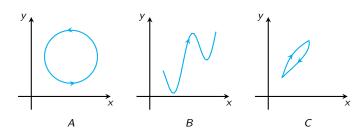
Vocabulary - Paths and Vector Fields

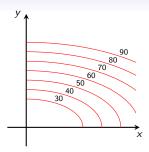
path A piecewise smooth curve

closed path A curve whose initial and terminal points are the same

conservative A vector field \mathbf{F} which is the gradient of a scalar function f, **vector field** called the *potential*, so that $\mathbf{F} = \nabla f$

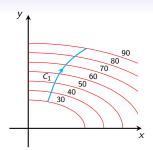
Which of the following is not a closed path?





At left is the contour plot for a function f whose gradient is continuous.

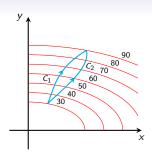
Compute the following:



At left is the contour plot for a function f whose gradient is continuous.

Compute the following:

•
$$\int_{C_1} \nabla f \cdot d\mathbf{r}$$



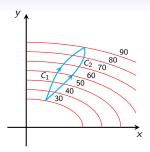
At left is the contour plot for a function f whose gradient is continuous.

Compute the following:

•
$$\int_{C_1} \nabla f \cdot d\mathbf{r}$$

• $\int_{C_2} \nabla f \cdot d\mathbf{r}$

•
$$\int_{C_2} \nabla f \cdot d\mathbf{r}$$



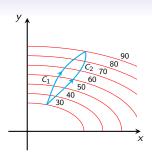
At left is the contour plot for a function f whose gradient is continuous.

Compute the following:

•
$$\int_{C_1} \nabla f \cdot d\mathbf{r}$$

•
$$\int_{C_2} \nabla f \cdot d\mathbf{r}$$

• Does it matter what path connects the endpoints?



At left is the contour plot for a function f whose gradient is continuous.

Compute the following:

•
$$\int_{C_1} \nabla f \cdot d\mathbf{r}$$

•
$$\int_{C_2} \nabla f \cdot d\mathbf{r}$$

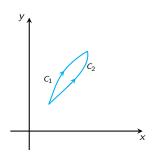
 Does it matter what path connects the endpoints?

Definition A line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ is *independent of path* in a domain D f

$$\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$$

for any two paths \mathcal{C}_1 and \mathcal{C}_2 that have the same initial and terminal points.

Path Independence and Closed Paths

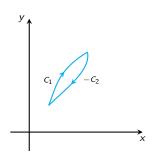


If

$$\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$$

and we reverse the direction of $C_2 \, \dots$

Path Independence and Closed Paths



$$\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$$

Path Independence

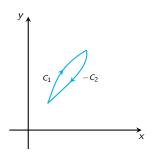
and we reverse the direction of $C_2 \ldots$

Then

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = 0$$

where C is the closed loop path that starts with C_1 and ends with $-C_2$.

Path Independence and Closed Paths



lf

$$\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$$

and we reverse the direction of $C_2 \ldots$

Then

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = 0$$

where C is the closed loop path that starts with C_1 and ends with $-C_2$.

Theorem The integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path for all paths in a domain D if and only if $\int_C \mathbf{F} \cdot d\mathbf{r} = 0$ for every closed path in D.

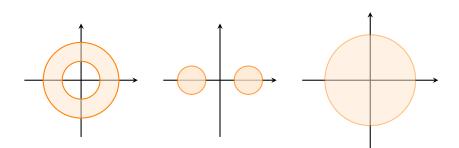
Vocabulary - Connected Regions

connected region A region D of \mathbb{R}^2 or \mathbb{R}^3 where any points P and Q

can be connected by a path contained in D

domain An open, connected region of \mathbb{R}^2 or \mathbb{R}^3

Which of these regions is not connected?



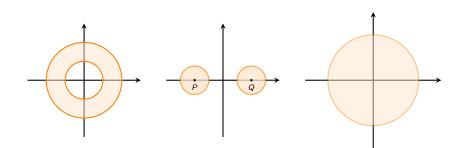
Vocabulary - Connected Regions

connected region A region D of \mathbb{R}^2 or \mathbb{R}^3 where any points P and Q

can be connected by a path contained in D

domain An open, connected region of \mathbb{R}^2 or \mathbb{R}^3

Which of these regions is not connected?



Vocabulary - Simply Connected Regions

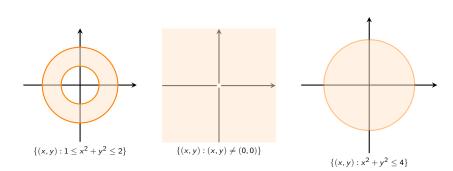
simple curve

A curve that doesn't intersect itself

simply connected

A connected region so that every simple closed curve in D surrounds only points of D

Which of these regions is not simply connected?



First Theorem of the Day

Theorem Suppose **F** is a vector field that is continuous on an open, simply connected region D. If $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path in D, then **F** is a conservative vector field on D; that is, there is a function f so that $\nabla f = \mathbf{F}$

How do you find the function f (two dimensions)?

- Pick a point (a, b) in the domain D
- Compute

$$f(x,y) = \int_{(a,b)}^{(x,y)} \mathbf{F} \cdot d\mathbf{r}$$

• In fact, you can show that this function f satisfies

$$\mathbf{F}(x,y) = \frac{\partial f}{\partial x}(x,y)\mathbf{i} + \frac{\partial f}{\partial y}(x,y)\mathbf{j}$$

Key Observation If $F = \nabla f$ then

$$\mathbf{F}(x,y) = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j} = \frac{\partial f}{\partial x}(x,y)\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j}$$

Compute $\partial P/\partial y$ and $\partial Q/\partial x$ as a second derivative of f:

Key Observation If $F = \nabla f$ then

$$\mathbf{F}(x,y) = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j} = \frac{\partial f}{\partial x}(x,y)\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j}$$

Compute $\partial P/\partial y$ and $\partial Q/\partial x$ as a second derivative of f:

$$\frac{\partial P}{\partial y} = \frac{\partial}{\partial y} \frac{\partial f}{\partial x} = \frac{\partial^2 f}{\partial y \partial x}$$

Key Observation If $F = \nabla f$ then

$$\mathbf{F}(x,y) = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j} = \frac{\partial f}{\partial x}(x,y)\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j}$$

Compute $\partial P/\partial y$ and $\partial Q/\partial x$ as a second derivative of f:

$$\frac{\partial P}{\partial y} = \frac{\partial}{\partial y} \frac{\partial f}{\partial x} = \frac{\partial^2 f}{\partial y \partial x} \qquad \frac{\partial Q}{\partial x} = \frac{\partial}{\partial x} \frac{\partial f}{\partial y} = \frac{\partial^2 f}{\partial x \partial y}$$

Key Observation If $F = \nabla f$ then

$$\mathbf{F}(x,y) = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j} = \frac{\partial f}{\partial x}(x,y)\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j}$$

Compute $\partial P/\partial y$ and $\partial Q/\partial x$ as a second derivative of f:

$$\frac{\partial P}{\partial y} = \frac{\partial}{\partial y} \frac{\partial f}{\partial x} = \frac{\partial^2 f}{\partial y \partial x} \qquad \frac{\partial Q}{\partial x} = \frac{\partial}{\partial x} \frac{\partial f}{\partial y} = \frac{\partial^2 f}{\partial x \partial y}$$

So, by Clairaut's Theorem, for a conservative vector field:

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

Find the Conservative Vector Field

Theorem If $\mathbf{F}(x,y) = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j}$ is a conservative vector field, and P,Q have continuous first-order partials on a domain D, then throughout D

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

Which of the following vector fields are definitely not conservative?

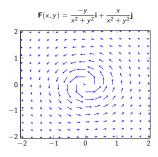
1.
$$F(x, y) = -yi + xj$$

2.
$$\mathbf{F}(x, y) = x^3 \mathbf{i} + y^2 \mathbf{j}$$

3.
$$\mathbf{F}(x, y) = ye^x \mathbf{i} + (e^x + e^y) \mathbf{j}$$

4.
$$\mathbf{F}(x,y) = \frac{-y}{x^2 + y^2}\mathbf{i} + \frac{x}{x^2 + y^2}\mathbf{j}, \quad (x,y) \neq (0,0)$$

There's One in Every Crowd



- 1. Does **F** satisfy the "conservative vector field" condition?
- 2. Suppose *C* is the circle $x^2 + y^2 = 1$. What is $\int_C \mathbf{F} \cdot d\mathbf{r}$ for the vector field shown?
- 3. Is the domain

$$\{(x,y): x^2 + y^2 \neq 0\}$$

simply connected?

Theorem Let $\mathbf{F} = P\mathbf{i} + Q\mathbf{j}$ be a vector field defined on an open, simply connected region D. Suppose that P and Q have continuous partial derivatives and

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

throughout D. Then **F** is conservative.

Which of the following vector fields are conservative?

1.
$$F(x, y) = -yi + xj$$

2.
$$\mathbf{F}(x, y) = x^3 \mathbf{i} + y^2 \mathbf{j}$$

3.
$$\mathbf{F}(x, y) = ye^{x}\mathbf{i} + (e^{x} + e^{y})\mathbf{j}$$

4.
$$\mathbf{F}(x,y) = \frac{-y}{x^2 + y^2}\mathbf{i} + \frac{x}{x^2 + y^2}\mathbf{j}, \quad (x,y) \neq (0,0)$$

Recall that if $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} = \nabla f$, then

$$P = \frac{\partial f}{\partial x}, \quad Q = \frac{\partial f}{\partial y}$$

Example Find f if $\mathbf{F}(x, y) = (y^2 - 2x)\mathbf{i} + 2xy\mathbf{j}$

Recall that if $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} = \nabla f$, then

$$P = \frac{\partial f}{\partial x}, \quad Q = \frac{\partial f}{\partial y}$$

Example Find f if $\mathbf{F}(x, y) = (y^2 - 2x)\mathbf{i} + 2xy\mathbf{j}$

1. $\frac{\partial f}{\partial x} = y^2 - 2x$ so taking antiderivatives in x

$$f(x, y) = y^2x - x^2 + C(y)$$

where C(y) is a constant that may depend on y

Recall that if $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} = \nabla f$, then

$$P = \frac{\partial f}{\partial x}, \quad Q = \frac{\partial f}{\partial y}$$

Example Find f if $\mathbf{F}(x, y) = (y^2 - 2x)\mathbf{i} + 2xy\mathbf{j}$

1. $\frac{\partial f}{\partial x} = y^2 - 2x$ so taking antiderivatives in x

$$f(x,y) = y^2x - x^2 + C(y)$$

where C(y) is a constant that may depend on y

2. From the answer we found in step 1, $\frac{\partial f}{\partial y}=2xy+C'(y)=2xy$ so C'(y)=0

Recall that if $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} = \nabla f$, then

$$P = \frac{\partial f}{\partial x}, \quad Q = \frac{\partial f}{\partial y}$$

Example Find f if $\mathbf{F}(x, y) = (y^2 - 2x)\mathbf{i} + 2xy\mathbf{j}$

1. $\frac{\partial f}{\partial x} = y^2 - 2x$ so taking antiderivatives in x

$$f(x,y) = y^2x - x^2 + C(y)$$

where C(y) is a constant that may depend on y

- 2. From the answer we found in step 1, $\frac{\partial f}{\partial y}=2xy+C'(y)=2xy$ so C'(y)=0
- 3. Finally, $f(x, y) = xy^2 x^2 + C$

Line Integrals of Conservative Vector Fields

Recall that if $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} = \nabla f$, then

$$P = \frac{\partial f}{\partial x}, \quad Q = \frac{\partial f}{\partial y}$$

Example: Find $\int_C \mathbf{F} \cdot d\mathbf{r}$ by finding f so that $\nabla f = \mathbf{F}$ if:

$$\mathbf{F}(x,y) = (1+xy)e^{xy}\mathbf{i} + x^2e^{xy}\mathbf{j}$$

$$C: \mathbf{r}(t) = \cos t\mathbf{i} + 2\sin t\mathbf{j}, \quad 0 \le t \le \pi/2$$