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Final Exam

Your Final Exam is on Wednesday, May 1 at 6:00 PM. Please be at
least five minutes early and bring your student ID. Ground rules are the
same as for previous exams. Make a note of your exam room:

Section Instructor Exam Room

Sections 001, 002 (Kasey Bray) CB 102

Section 003 (Deborah Wilkerson) CB 110
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Homework

• Homework D2 is due tonight

• Work on Stewart problems for 16.7: 5-19
alternate odd, 21-31 alternate odd

• Study for your last quiz of the semester, Quiz
10, on sections 16.5-16.6 (divergence and curl,
parameterized surfaces)

• Read section 16.8 for Wednesday, Aprll 17
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Unit IV: Vector Calculus

Lecture 36 Curl and Divergence
Lecture 37 Parametric Surfaces
Lecture 38 Surface Integrals
Lecture 39 Stokes’ Theorem
Lecture 40 The Divergence Theorem

Lecture 41 Final Review, Part I
Lecture 42 Final Review, Part II
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Goals of the Day

This lecture is about parametric surfaces. You’ll learn:

• How to integrate a scalar function over a parameterized
surface

• What an oriented surface is and how to compute its unit
normal

• How to integrate a vector field over a parameterized surface
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Sneak Preview - Scalar Surface Integrals

Scalar Line Integrals

If C is parameterized by

r(t) = 〈x(t), y (t), z(t))〉,

a ≤ t ≤ b:

∫
C
F ds =

∫ b

a
F (x(t), y (t), z(t))ds

where

ds =
√

x ′(t)2 + y ′(t)2 + z ′(t)2 dt

Scalar Surface Integrals

If S is parameterized by

r(u, v ) = 〈x(u, v ), y (u, v ), z(u, v )〉,

(u, v ) ∈ D:

∫∫
S
F dS =

∫∫
D
F |ru × rv | du dv

where

F = F (x(u, v ), y (u, v ), z(u, v ))

ru =
∂

∂u
r(u, v )

rv =
∂

∂v
r(u, v )
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Sneak Preview - Vector Surface Integrals

Vector Line Integrals

If C is parameterized by

r(t) = 〈x(t), y (t), z(t))〉,

a ≤ t ≤ b:

∫
C
F · dr =

∫ b

a
F · T(t) ds

F = F(x(t), y (t), z(t))

T(t) =
r′(t)

|r′(t)|

Vector Surface Integrals

If S is parameterized by

r(u, v ) = 〈x(u, v ), y (u, v ), z(u, v )〉,

(u, v ) ∈ D:

∫∫
S
F · dS =

∫∫
D
F ·N du dv

F = F(x(u, v ), y (u, v ), z(u, v ))

N = ru × rv
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Parameterized Surface Review

u

v

0

π

2π

D

π/4

π/4

The parameter space D

sin v cos ui+ sin v sin uj+ cos vk

A parameterized surface is traced out by
r(u, v) where (u, v) ∈ D, a region in the
uv plane.

If v is held fixed and u varies, the result is a
curve along the surface.

If u is held fixed and v varies, the result is a
different curve along the surface.

Each curve has a tangent vector, so there
are two independent tangent vectors

ru = ∂r/∂u, rv = ∂r/∂v

The vectors ru and rv span a tangent plane

The normal to the tangent plane is

N = ru × rv



Learning Goals Review Scalar Surface Integrals Oriented Surfaces Vector Surface Integrals

Parameterized Surface Review

u

v

0

π

2π

D

π/4

π/4

The parameter space D

sin v cos ui+ sin v sin uj+ cos vk

A parameterized surface is traced out by
r(u, v) where (u, v) ∈ D, a region in the
uv plane.

If v is held fixed and u varies, the result is a
curve along the surface.

If u is held fixed and v varies, the result is a
different curve along the surface.

Each curve has a tangent vector, so there
are two independent tangent vectors

ru = ∂r/∂u, rv = ∂r/∂v

The vectors ru and rv span a tangent plane

The normal to the tangent plane is

N = ru × rv



Learning Goals Review Scalar Surface Integrals Oriented Surfaces Vector Surface Integrals

Parameterized Surface Review

u

v

0

π

2π

D

π/4

π/4
The parameter space D

sin v cos ui+ sin v sin uj+ cos vk

A parameterized surface is traced out by
r(u, v) where (u, v) ∈ D, a region in the
uv plane.

If v is held fixed and u varies, the result is a
curve along the surface.

If u is held fixed and v varies, the result is a
different curve along the surface.

Each curve has a tangent vector, so there
are two independent tangent vectors

ru = ∂r/∂u, rv = ∂r/∂v

The vectors ru and rv span a tangent plane

The normal to the tangent plane is

N = ru × rv



Learning Goals Review Scalar Surface Integrals Oriented Surfaces Vector Surface Integrals

Parameterized Surface Review

u

v

0

π

2π

D

π/4

π/4
The parameter space D

sin v cos ui+ sin v sin uj+ cos vk

A parameterized surface is traced out by
r(u, v) where (u, v) ∈ D, a region in the
uv plane.

If v is held fixed and u varies, the result is a
curve along the surface.

If u is held fixed and v varies, the result is a
different curve along the surface.

Each curve has a tangent vector, so there
are two independent tangent vectors

ru = ∂r/∂u, rv = ∂r/∂v

The vectors ru and rv span a tangent plane

The normal to the tangent plane is

N = ru × rv



Learning Goals Review Scalar Surface Integrals Oriented Surfaces Vector Surface Integrals

Parameterized Surface Review

u

v

0

π

2π

D

π/4

π/4
The parameter space D

sin v cos ui+ sin v sin uj+ cos vk

A parameterized surface is traced out by
r(u, v) where (u, v) ∈ D, a region in the
uv plane.

If v is held fixed and u varies, the result is a
curve along the surface.

If u is held fixed and v varies, the result is a
different curve along the surface.

Each curve has a tangent vector, so there
are two independent tangent vectors

ru = ∂r/∂u, rv = ∂r/∂v

The vectors ru and rv span a tangent plane

The normal to the tangent plane is

N = ru × rv



Learning Goals Review Scalar Surface Integrals Oriented Surfaces Vector Surface Integrals

Parameterized Surface Review

u

v

0

π

2π

D

π/4

π/4
The parameter space D

sin v cos ui+ sin v sin uj+ cos vk

A parameterized surface is traced out by
r(u, v) where (u, v) ∈ D, a region in the
uv plane.

If v is held fixed and u varies, the result is a
curve along the surface.

If u is held fixed and v varies, the result is a
different curve along the surface.

Each curve has a tangent vector, so there
are two independent tangent vectors

ru = ∂r/∂u, rv = ∂r/∂v

The vectors ru and rv span a tangent plane

The normal to the tangent plane is

N = ru × rv



Learning Goals Review Scalar Surface Integrals Oriented Surfaces Vector Surface Integrals

Scalar Surface Integrals

If S is parameterized by r(u, v) for (u, v) ∈ D, and f is a function continuous
in a neighborhood of S ,∫∫

S
f (x , y , z) dS =

∫∫
D

F (x(u, v), y(u, v), z(u, v)) |ru × rv | du dv

1. Suppose that f (x , y , z) = g(
√

x2 + y2 + z2) where g(2) = 5. Find∫∫
S f (x , y , z) dS if S is the sphere x2 + y2 + z2 = 4.

2. Find
∫∫

S xz dS if S is the part of the plane 2x + 2y + z = 4 that lies in
the first octant.

3. Find
∫∫

y2 dS if S is the part of the sphere x2 + y2 + z2 = 1 that lies

above the cone z =
√

x2 + y2.
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The Oriented Unit Normal to a Surface
A surface S is called an oriented surface if there is a unit normal vector n at
every point on the surface that varies continuously along the surface. Every
parameterized surface has such a unit normal, given by

n =
ru × rv
|ru × rv |

.

Every orientable surface in R3 has two possible orientations, one with n and
the other with −n.

The orientation of the sphere with n = ru×rv
|ru×rv | The orientation of the sphere with n = − ru×rv

|ru×rv |
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Oriented Surfaces versus the Möbius Strip

The Möbius Band

August Ferdinand Möbius (1790–
1868)
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Vector Surface Integrals

If F is a continuous vector field defined on an oriented surface S with unit
normal vector n, the surface integral of F over S is∫∫

S
F dS =

∫∫
S
F · n dS

This integral is also called the flux of F across S . Depending on the choice of
normal, it measures either what goes in (inward normal) or what comes out
(outward normal).

1. Find the flux of F(x , y , z) = x i+ y j+ z2k across S if S is the sphere of
radius 1 and center at the origin

2. Find the flux of F(x , y , z) = y j− zk across the paraboloid y = x2 + z2,
0 ≤ y ≤ 1, and the disc x2 + y2 ≤ 1, y = 1
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