Math 213 - Stokes' Theorem

Peter A. Perry
University of Kentucky

April 19, 2019

Homework

- Webwork D3 on section 16.7 is due tonight!
- Work on Stewart problems for 16.8: 1, 3, 7, 13, 19
- Read section 16.9 for Monday, April 22

Unit IV: Vector Calculus

Lecture 36 Curl and Divergence
Lecture 37 Parametric Surfaces
Lecture 38 Surface Integrals
Lecture 39 Stokes' Theorem
Lecture 40 The Divergence Theorem

Lecture 41 Final Review, Part I
Lecture 42 Final Review, Part II

Goals of the Day

This lecture is about Stokes' Theorem, which generalizes Green's Theorem to surfaces in three dimensions. You will learn:

- What the oriented boundary of a surface S is
- How the flux of $\nabla \times F$ through a surface S is related to the line integral of F over the oriented boundary of S
- How Stokes' Theorem can be used to compute surface integrals and line integrals

Sneak Preview - Green versus Stokes

Green's Theorem

George Stokes (1793-1841)

Suppose D is a plane region bounded by a piecewise smooth, simple closed curve C. If P and Q have continuous partial derivatives in an open region that contains D

$$
\begin{aligned}
& \int_{C} P d x+Q d y= \\
& \quad \iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A
\end{aligned}
$$

Stokes' Theorem

George Green (1819-1903)

Suppose S is an oriented piecewise smooth surface bounded by a simple, closed, piecewise smooth curve C with positive orientation. Suppose \mathbf{F} is a vector field with continuous partial derivatives on an open region in \mathbb{R}^{3} that contains S. Then

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} d S
$$

where \mathbf{n} is the outward unit normal

Sneak Preview - Green versus Stokes

Green's Theorem

Suppose D is a plane region bounded by a piecewise smooth, simple closed curve C. If P and Q have continuous partial derivatives in an open region that contains D

$$
\begin{aligned}
& \int_{C} P d x+Q d y= \\
& \quad \iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A
\end{aligned}
$$

Stokes' Theorem

Suppose S is an oriented piecewise smooth surface bounded by a simple, closed, piecewise smooth curve C with positive orientation. Suppose \mathbf{F} is a vector field with continuous partial derivatives on an open region in \mathbb{R}^{3} that contains S. Then

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} d S
$$

where \mathbf{n} is the outward unit normal

Green versus Stokes, Continued

In Green's Theorem, $\mathbf{F}=P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}$ is a vector field in the plane In Stokes' Theorem,

$$
\mathbf{F}=P(x, y, z) \mathbf{i}+Q(x, y, z) \mathbf{j}+R(x, y, z) \mathbf{k}
$$

is a vector field in space
Stokes' Theorem

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \mathbf{F} \cdot \mathbf{n} d S
$$

can also be written

$$
\begin{aligned}
& \int_{C} P d x+Q d y+R d z= \\
& \quad \iint_{S}\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right) d y d z+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right) d x d z+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y
\end{aligned}
$$

If S lies in the xy plane and $R=0$, Stokes' Theorem reduces to Green's Theorem

Surface to the Left!

The parameterization

$$
\mathbf{r}(t)=a \cos t+b \sin t
$$

for $0 \leq t \leq 2 \pi$ gives bounding curve the correct orientation

The parameterization

$$
\begin{aligned}
\mathbf{r}(u, v)= & \sin v \cos u \mathbf{i}+\sin v \sin u \mathbf{j} \\
& +\cos v \mathbf{j}
\end{aligned}
$$

for $0 \leq u \leq 2 \pi, 0 \leq v \leq \pi / 4$ gives the bounding curve the correct orientation

Parameterize the surface S which lies on the sphere

$$
x^{2}+y^{2}+z^{2}=8
$$

and above the cylinder

$$
x^{2}+y^{2}=4
$$

Parameterize the surface S which lies on the sphere

$$
x^{2}+y^{2}+z^{2}=8
$$

and above the cylinder

$$
x^{2}+y^{2}=4
$$

In spherical coordinates, $0 \leq u \leq 2 \pi, 0 \leq v \leq \pi / 4$ so:

$$
\begin{aligned}
\mathbf{r}(u, v) & =\sqrt{8}(\sin v \cos u \mathbf{i}+\sin v \sin u \mathbf{j}+\cos v \mathbf{k}) \\
\mathbf{r}_{u} & =-\sqrt{8} \sin v \sin u \mathbf{i}+\sqrt{8} \sin v \cos u \mathbf{j} \\
\mathbf{r}_{v} & =\sqrt{8} \cos v \cos u \mathbf{i}+\sqrt{8} \cos v \sin u \mathbf{j}-\sqrt{8} \sin v \mathbf{k} \\
\mathbf{r}_{u} \times \mathbf{r}_{v} & =8 \sin ^{2} v \cos u \mathbf{i}+8 \sin ^{2} v \sin u+8 \sin v \cos v \mathbf{k} \\
\mathbf{N} & =\sin v \cos u \mathbf{i}+\sin v \sin u \mathbf{j}+\cos v \mathbf{k}
\end{aligned}
$$

Should we have known the formula for $\mathbf{N}(u, v)$ already? Is it the unit outward normal?

Which Way is Outward? What's Positive Orientation?

Theorem (Stokes) Suppose S is an oriented piecewise smooth surface bounded by a simple, closed, piecewise smooth curve C with positive orientation. Suppose \mathbf{F} is a vector field with continuous partial derivatives on an open region in \mathbb{R}^{3} that contains S. Then

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} d S
$$

where \mathbf{n} is the outward unit normal

If you walk around C with your head in the direction of the outward normal to the surface, the surface will always be on your left.

Using Stokes' Theorem

Theorem Suppose S is an oriented piecewise smooth surface bounded by a simple, closed, piecewise smooth curve C with positive orientation. Suppose \mathbf{F} is a vector field with continuous partial derivatives on an open region in \mathbb{R}^{3} that contains S. Then

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} d S
$$

where \mathbf{n} is the outward unit normal

Use Stokes' Thoerem to find \iint_{S} curl $\mathbf{F} \cdot d \mathbf{S}$ if

$$
\mathbf{F}(x, y, z)=x^{2} \sin z \mathbf{i}+y^{2} \mathbf{j}+x y \mathbf{k}
$$

if S is the part of the paraboloid $z=1-x^{2}-y^{2}$ that lies above the $x y$-plane, oriented upward

What is the bounding curve C? How should C be oriented?

Using Stokes' Theorem

Stokes' Theorem Suppose S is an oriented piecewise smooth surface bounded by a simple, closed, piecewise smooth curve C with positive orientation. Suppose \mathbf{F} is a vector field with continuous partial derivatives on an open region in \mathbb{R}^{3} that contains S. Then

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} d S
$$

where \mathbf{n} is the outward unit normal

Use Stokes' Theorem to evaluate

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

if C is the triangle shown and

$$
\mathbf{F}(x, y, z)=\left(x+y^{2}\right) \mathbf{i}+\left(y+z^{2}\right) \mathbf{j}+\left(z+x^{2}\right) \mathbf{k},
$$

$$
\operatorname{curl} \mathbf{F}=-2(z \mathbf{i}+x \mathbf{j}+y \mathbf{k})
$$

What is a good choice of surface S ?
How should it be oriented?

Review

Stokes' Theorem Suppose S is an oriented piecewise smooth surface bounded by a simple, closed, piecewise smooth curve C with positive orientation. Suppose \mathbf{F} is a vector field with continuous partial derivatives on an open region in \mathbb{R}^{3} that contains S. Then

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} d S
$$

where \mathbf{n} is the outward unit normal

Remember:
If you walk around C with your head in the direction of the outward normal to the surface, the surface will always be on your left.

