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Homework

• Webwork A4 on section 12.6 is due tonight!

• Today is Drop Day

• Quiz # 3 on 12.5–12.6 on Thursday

• Re-re-read section 13.2, pp. 855-859

• Begin working on pp. 860–861, problems 9, 11,
13, 17-33 (odd), 37, 39, 49, 50

• Read section 13.3, pp. 861–867
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Unit I: Geometry and Motion in Space

Lecture 1 Three-Dimensional Coordinate Systems
Lecture 2 Vectors
Lecture 3 The Dot Product
Lecture 4 The Cross Product
Lecture 5 Equations of Lines and Planes, Part I
Lecture 6 Equations of Lines and Planes, Part II
Lecture 7 Cylinders and Quadric Surfaces

Lecture 8 Vector Functions and Space Curves
Lecture 9 Derivatives and integrals of Vector Functions
Lecture 10 Motion in Space: Velocity and Acceleration
Lecture 11 Functions of Several Variables

Lecture 12 Exam 1 Review
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Goals of the Day

• Know how to compute derivatives and integrals of vector
functions

• Know how to use the derivative to find tangent lines and unit
tangents

• Know how to compute the arc length of a space curve
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Mechanics
Derivative: if

r(t) = 〈f (t), g(t), h(t)〉
then

r′(t) = 〈f ′(t), g ′(t), h′(t)〉

Definite Integral: If
r(t) = 〈f (t), g(t), h(t)〉

then ∫ b

a
r(t) dt =

〈∫ b

a
f (t) dt,

∫ b

a
g(t) dt,

∫ b

a
h(t) dt

〉

Indefinite integral: if
r(t) = 〈f (t), g(t), h(t)〉

then ∫
r(t) dt =

〈∫
f (t) dt,

∫
g(t) dt,

∫
h(t) dt

〉
+C

where C is a constant vector
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Meaning

The derivative of a vector-valued function r(t) is given by

r′(t) =
dr

dt
= lim

h→0

r(t + h)− r(t)

h

x

y

z

The vector

r(t + h)− r(t)

h

measures the displacement from t to
t + h
The vector r′(t) gives the instantaneous
change in displacement

The magnitude |r ′(t)| gives instanta-
neous speed
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Tangent Vectors

Sketch the plane curve r(t) = 〈t − 2, t2 + 1〉 and sketch the tangent vector at
t = −1
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Lots of Rules

d

dt
(u(t) + v(t)) = u′(t) + v′(t)

d

dt
(cu(t)) = cu′(t)

d

dt
(f (t)u(t)) = f ′(t)u(t) + f (t)u′(t)

d

dt
(u(t) · v(t)) = u′(t) · v(t) + u(t) · v′(t)

d

dt
(u(t)× v(t)) = u′(t)× v(t) + u(t)× v′(t)

d

dt
(u(f (t))) = f ′(t)u′(f (t))

There are three different versions of the “product rule”!
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Tangent Lines

Find parametric equations for the tangent line to the curve

x = t, y = e−t , z = 2t − t2

at (0, 1, 0).

• What value of t corresponds to (0, 1, 0)?

• What is r′(t) for this value of t?

• What are the point on the line and the vector along the line used to
derive the parametric equations?
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Tangent Lines, Unit Tangent Vector

The unit tangent to r(t) is the vector

T(t) =
r′(t)
|r′(t)| .

1. If r(t) = 〈t, t2, t3〉, find r′(t), T(1), r′′(t), and r′(t)× r′′(t)

2. If r(t) = 〈e2t , e−2t , te2t 〉, find T(0), r′′(0), and r′(t) · r′′(t)

3. Find the intersection of the curves r1(t) = 〈t, t2, t3〉 and
r2(t) = 〈sin t, sin 2t, t〉 and compute their angle of intersection.
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Arc Length - Two Dimensions

The arc length of a plane curve x = f (t), y = g(t), a ≤ t ≤ b is

L =
∫ b

a

√
[f ′(t)]2 + [g ′(t)]2 dt

Notice that:

• If r(t) = 〈f (t), g(t)〉, then r′(t) = 〈f ′(t), g ′(t)〉

• So

|r′(t)| =
√
[f ′(t)]2 + [g ′(t)]2

• So we can write the arc length formula s

L =
∫ b

a
|r′(t)| dt
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Arc Length - Three Dimensions

The arc length of the space curve

x = f (t), y = g(t), z = h(t)

for a ≤ t ≤ b is

L =
∫ b

a

√
[f ′(t)]2 + [g ′(t)]2 + [h′(t)]2 dt

which is easiest to remember as

L =
∫ b

a

∣∣r′(t)∣∣ dt
After all, distance travelled should be the integral of speed!
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Arc Length - Three Dimensions

L =
∫ b

a

∣∣r′(t)∣∣ dt

1. Find the arc length of the curve

r(t) = 〈t, 3 cos t, 3 sin t〉

for −5 ≤ t ≤ 5.

2. Find the arc length of the curve

i+ t2j+ t3k

for 0 ≤ t ≤ 1.
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The Arc Length Function

If C is a space curve given by a vector function

r(t) = f (t)i+ g(t)j+ h(t)k

for a ≤ t ≤ b, the arc length function for C is given by

s(t) =
∫ t

a

∣∣r′(u)∣∣ dt
By the Fundamental Theorem of Calculus,

ds

dt
=
∣∣r′(t)∣∣ .

Find the arc length function for the curve

r(t) = cos ti+ sin tj+ tk,

0 ≤ t ≤ 4π and re-parameterize this curve by arc length.
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Lecture Review

• We learned how to compute derivatives and integrals of vector
functions

• We learned how to use the derivative to find the tangent line
and unit tangent to a space curve at a given point

• We learned how to compute the arc length of a space curve
(the distance travelled along the curve)
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