
Math 575 - Principles of Analysis
Midterm Exam I

Name: KEY

1. (a) (5 points) Say what it means for a real number c to be the least
upper bound of a subset A of R.

Solution: c is the least upper bound of A if:

(2 points) c is an upper bound of A and

(3 points) c ≤ c′ for any upper bound c′ of A.

(b) (20 points) Suppose that A and B are subsets of R and that A
and B are bounded above. Define

A + B = {x + y : x ∈ A, y ∈ B}.

Prove that
sup(A + B) = sup(A) + sup(B)

Solution: (5 points) For every a ∈ A and b ∈ B, we have a ≤ sup(A)
and b ≤ sup(B). (5 points) Hence

a + b ≤ sup(A) + sup(B)

which shows that the number c = sup(A) + sup(B) is an upper bound
for A + B.

(10 points) Proof 1: Given any ε > 0 there are numbers a ∈ A and
b ∈ B so that a > sup(A)−ε and b > sup(B)−ε, so that a+b ≥ c−2ε.
This shows that c− ε is not an upper bound for any ε > 0, so c is the
least upper bound.

Proof 2 (courtesy of Ethan Reed): Suppose that c is an upper bound
for A+B. If a ∈ A and b ∈ B then a+ b ≤ c or a ≤ c− b for all a ∈ A.
It follows that sup(A) ≤ c − b so that sup(A) + b ≤ c for all b ∈ B.
Hence, sup(A) + sup(B) ≤ c, proving that sup(A) + sup(B) is the least
upper bound.
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2. (a) (5 points) Say what it means for a sequence {an} of complex
numbers to be Cauchy.

Solution: (5 points) A sequence {an} is Cauchy if, given any
ε > 0, there is an n ∈ N so that |an + m− an| < ε whenever
n ≥ N and m ∈ N.

(b) (20 points) Suppose that {an} is a complex sequence, that {bn} is
a nondecreasing sequence of positive numbers which converge to
a limit, and that

|an+1 − an| ≤ bn+1 − bn.

Show that {an} is a Cauchy sequence.

Solution: (10 points) Observe that

|an+m − an| ≤
m∑
j=1

|an+j − an+j−1|

≤
m∑
j=1

(bn+j − bn+j−1)

= bn+m − bn

= |bn+m − bn|

where the last step follows because {bn} is nondecreasing.

(10 points) Since {bn} is Cauchy, given ε > 0, choose N ∈ N so
that |bn+m − bn| < ε for all n ≥ N and m ∈ N. It then follows
that |an+m − an| < ε for all such m, n, which proves that {an} is
Cauchy.

3. (25 points) Consider the series
∑∞

n=1 an and suppose that

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ < 1.

Prove directly (i.e., without appealing to the ratio test) that
∑∞

n=1 an
is convergent. You may assume that the comparison test holds.
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Solution: (5 points) Let r = limn→∞

∣∣∣∣an+1

an

∣∣∣∣ and choose s with r <

s < 1.

(5 points) By the definition of limit, there is a positive integer N so

that

∣∣∣∣an+1

an

∣∣∣∣ < s for all n ≥ N .

(5 points) By iteration we conclude that |an+m| ≤ sm|an| for all m ∈ N.

(10 points) We can then conclude from the comparison test that the
series

∑∞
m=1 |an+m| converges since the geometric series

∑∞
m=1 s

n con-
verges.

4. (a) (5 points) Define lim supn→∞ xn for a bounded sequence of real
numbers {xn}.

Solution: (5 points) Let am = sup{xn : n ≥ m}. Then

lim sup
n→∞

xn = lim
m→∞

am

where the latter limit exists because {am} is nondecreasing.

(b) (15 points) Prove that if {xn} and {yn} are bounded sequences,
then

lim sup
n→∞

(xn + yn) ≤ lim sup
n→∞

xn + lim sup
n→∞

yn

Solution: (5 points) Let A = lim supn→∞ xn and B = lim supn→∞ yn.
Let

am = sup{xn : n ≥ m},
bm = sup{yn : n ≥ m}.

Then am → A and bm → B as m→∞.

(5 points) Given any ε > 0, we can find an N1 so that am ≤ A+ ε
for all m ≥ N1, and an N2 so that bm ≤ B + ε for all m ≥ N2.
Choosing N = max(N1, N2) we have that am + bm ≤ A + B + 2ε
for all m ≥ N .

(5 points) From problem 1 (!), we have

sup{xn + yn : n ≥ m} ≤ am + bm ≤ A + B + 2ε
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from which it follows that

lim sup
n→∞

(xn + yn) ≤ A + B + 2ε.

Since ε > 0 is arbitrary, we obtain the desired inequality.

(c) (5 points) Give an example of sequences {xn} and {yn} where
strict inequality holds.

Solution: (5 points) There are lots of possible examples. Here’s
one that was a common choice. Let

xn = (−1)n, yn = (−1)n+1.

Then xn + yn = 0 for every n but lim sup xn = lim sup yn = 1, so
that the sum is 2. The underlying idea is that there should be
some kind of cancellation in the sum xn + yn.
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