Math 575 - Principles of Analysis
 Midterm Exam I

Name: KEY

1. (a) (5 points) Say what it means for a real number c to be the least upper bound of a subset A of \mathbb{R}.

Solution: c is the least upper bound of A if:
(2 points) c is an upper bound of A and
(3 points) $c \leq c^{\prime}$ for any upper bound c^{\prime} of A.
(b) (20 points) Suppose that A and B are subsets of \mathbb{R} and that A and B are bounded above. Define

$$
A+B=\{x+y: x \in A, y \in B\} .
$$

Prove that

$$
\sup (A+B)=\sup (A)+\sup (B)
$$

Solution: (5 points) For every $a \in A$ and $b \in B$, we have $a \leq \sup (A)$ and $b \leq \sup (B)$. (5 points) Hence

$$
a+b \leq \sup (A)+\sup (B)
$$

which shows that the number $c=\sup (A)+\sup (B)$ is an upper bound for $A+B$.
(10 points) Proof 1: Given any $\varepsilon>0$ there are numbers $a \in A$ and $b \in B$ so that $a>\sup (A)-\varepsilon$ and $b>\sup (B)-\varepsilon$, so that $a+b \geq c-2 \varepsilon$. This shows that $c-\varepsilon$ is not an upper bound for any $\varepsilon>0$, so c is the least upper bound.
Proof 2 (courtesy of Ethan Reed): Suppose that c is an upper bound for $A+B$. If $a \in A$ and $b \in B$ then $a+b \leq c$ or $a \leq c-b$ for all $a \in A$. It follows that $\sup (A) \leq c-b$ so that $\sup (A)+b \leq c$ for all $b \in B$. Hence, $\sup (A)+\sup (B) \leq c$, proving that $\sup (A)+\sup (B)$ is the least upper bound.
2. (a) (5 points) Say what it means for a sequence $\left\{a_{n}\right\}$ of complex numbers to be Cauchy.

Solution: (5 points) A sequence $\left\{a_{n}\right\}$ is Cauchy if, given any $\varepsilon>0$, there is an $n \in \mathbb{N}$ so that $\left|a_{n}+m-a_{n}\right|<\varepsilon$ whenever $n \geq N$ and $m \in \mathbb{N}$.
(b) (20 points) Suppose that $\left\{a_{n}\right\}$ is a complex sequence, that $\left\{b_{n}\right\}$ is a nondecreasing sequence of positive numbers which converge to a limit, and that

$$
\left|a_{n+1}-a_{n}\right| \leq b_{n+1}-b_{n}
$$

Show that $\left\{a_{n}\right\}$ is a Cauchy sequence.
Solution: (10 points) Observe that

$$
\begin{aligned}
\left|a_{n+m}-a_{n}\right| & \leq \sum_{j=1}^{m}\left|a_{n+j}-a_{n+j-1}\right| \\
& \leq \sum_{j=1}^{m}\left(b_{n+j}-b_{n+j-1}\right) \\
& =b_{n+m}-b_{n} \\
& =\left|b_{n+m}-b_{n}\right|
\end{aligned}
$$

where the last step follows because $\left\{b_{n}\right\}$ is nondecreasing.
(10 points) Since $\left\{b_{n}\right\}$ is Cauchy, given $\varepsilon>0$, choose $N \in \mathbb{N}$ so that $\left|b_{n+m}-b_{n}\right|<\varepsilon$ for all $n \geq N$ and $m \in \mathbb{N}$. It then follows that $\left|a_{n+m}-a_{n}\right|<\varepsilon$ for all such m, n, which proves that $\left\{a_{n}\right\}$ is Cauchy.
3. (25 points) Consider the series $\sum_{n=1}^{\infty} a_{n}$ and suppose that

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1
$$

Prove directly (i.e., without appealing to the ratio test) that $\sum_{n=1}^{\infty} a_{n}$ is convergent. You may assume that the comparison test holds.

Solution: (5 points) Let $r=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$ and choose s with $r<$ $s<1$.
(5 points) By the definition of limit, there is a positive integer N so that $\left|\frac{a_{n+1}}{a_{n}}\right|<s$ for all $n \geq N$.
(5 points) By iteration we conclude that $\left|a_{n+m}\right| \leq s^{m}\left|a_{n}\right|$ for all $m \in \mathbb{N}$. (10 points) We can then conclude from the comparison test that the series $\sum_{m=1}^{\infty}\left|a_{n+m}\right|$ converges since the geometric series $\sum_{m=1}^{\infty} s^{n}$ converges.
4. (a) (5 points) Define $\limsup _{n \rightarrow \infty} x_{n}$ for a bounded sequence of real numbers $\left\{x_{n}\right\}$.
Solution: (5 points) Let $a_{m}=\sup \left\{x_{n}: n \geq m\right\}$. Then

$$
\limsup _{n \rightarrow \infty} x_{n}=\lim _{m \rightarrow \infty} a_{m}
$$

where the latter limit exists because $\left\{a_{m}\right\}$ is nondecreasing.
(b) (15 points) Prove that if $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are bounded sequences, then

$$
\limsup _{n \rightarrow \infty}\left(x_{n}+y_{n}\right) \leq \limsup _{n \rightarrow \infty} x_{n}+\limsup _{n \rightarrow \infty} y_{n}
$$

Solution: (5 points) Let $A=\lim \sup _{n \rightarrow \infty} x_{n}$ and $B=\lim \sup _{n \rightarrow \infty} y_{n}$. Let

$$
\begin{aligned}
a_{m} & =\sup \left\{x_{n}: n \geq m\right\} \\
b_{m} & =\sup \left\{y_{n}: n \geq m\right\}
\end{aligned}
$$

Then $a_{m} \rightarrow A$ and $b_{m} \rightarrow B$ as $m \rightarrow \infty$.
(5 points) Given any $\varepsilon>0$, we can find an N_{1} so that $a_{m} \leq A+\varepsilon$ for all $m \geq N_{1}$, and an N_{2} so that $b_{m} \leq B+\varepsilon$ for all $m \geq N_{2}$. Choosing $N=\max \left(N_{1}, N_{2}\right)$ we have that $a_{m}+b_{m} \leq A+B+2 \varepsilon$ for all $m \geq N$.
(5 points) From problem 1 (!), we have

$$
\sup \left\{x_{n}+y_{n}: n \geq m\right\} \leq a_{m}+b_{m} \leq A+B+2 \varepsilon
$$

from which it follows that

$$
\limsup _{n \rightarrow \infty}\left(x_{n}+y_{n}\right) \leq A+B+2 \varepsilon .
$$

Since $\varepsilon>0$ is arbitrary, we obtain the desired inequality.
(c) (5 points) Give an example of sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ where strict inequality holds.

Solution: (5 points) There are lots of possible examples. Here's one that was a common choice. Let

$$
x_{n}=(-1)^{n}, \quad y_{n}=(-1)^{n+1} .
$$

Then $x_{n}+y_{n}=0$ for every n but $\lim \sup x_{n}=\limsup y_{n}=1$, so that the sum is 2 . The underlying idea is that there should be some kind of cancellation in the sum $x_{n}+y_{n}$.

