
PRINCIPLES OF ANALYSIS - LECTURE NOTES

PETER A. PERRY

1. Constructions of Z, Q, R

Beginning with the natural numbers N “ t1, 2, 3, . . .u we can use set theory to
construct, successively, Z, Q, and R. We’ll not give all details but discuss a few key
points that arise in the constructions.

Recall that an equivalence relation among elements in a set S is a binary relation
” with the following properties:

(i) (reflexivity) a ” a for all a P S
(ii) (symmetry) For all a, b P S, if a ” b, then b ” a

(iii) (transitivity) For all a, b, c P S, if a ” b and b ” c, then a ” c

For a given a P S, we denote by ras the equivalence class of a in S with respect to
”, i.e.,

ras “ tb P S : b ” au .

It is not too hard to see that the set of equivalence classes of elements of S partitions
S into a disjoint union of subsets. Obviously, a P ras.

1.1. From N to Z. A natural way to construct Z from N is to represent elements
of Z as formal differences m ´ n where m,n P N. Of course there are many such
representations, so we call two representations m ´ n and m1 ´ n1 equivalent if
m ` n1 “ m1 ` n. Observe that this is a statement about equality of natural
numbers. The “backstory” is that we made the computation

m´ n “ m1 ´ n1 (What we want to be true)

m´ n` n1 “ m1 (Add n1 to both sides)

m` n1 “ n`m1 (Add n to both sides)

in order to go from the statement we want to a legitimate statement about natural
numbers.

Thus, to be strictly precise, we define Z to be the set of all equivalence classes
rm´ ns of such representations where we say that

(1.1) m´ n ” m1 ´ n1 if m` n1 “ m1 ` n.

A particular representation of z “ rm ´ ns by positive integers m and n is called
representative of that equivalence class.
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From now on, if we want to define an operation on integers (addition, subtraction,
multiplication) we need to be sure that our definition respects equivalence classes.
Thus, for example, if we define

rm´ ns ` rp´ qs “ rpm` pq ´ pn` qqs

we want to be sure that the right-hand side defines the same integer, no matter
which representative we pick for rm ´ ns and rp ´ qs. That is, we need to check
that if m ´ n, m1 ´ n1 are two represenatives of z “ rm ´ ns, and if p ´ q, p1 ´ q1

are two representatives of rp´ qs, then rpm` pq ´ pn` qqs “ rpm1` p1q ´ pn1` q1qs.
Working backwards from the definition (1.1), we need to prove that

pm` pq ` pn1 ` q1q “ pm1 ` p1q ` pn` qq

given that
m` n1 “ m1 ` n

and
p` q1 “ p1 ` q.

You should be able to do this using only facts about positive integers!
Similarly, we’d like to define multiplication of z “ rm´ ns and z1 “ rp´ qs as1

z ¨ z1 “ rpmp` nqq ´ pnp`mqqs

but we need to know that the right-hand side is the same no matter what choice
of representatives we make for z and z1. In your homework you are asked to prove
that this is the case.

In principle, one can prove all of the axioms involving addition, multiplication,
and order relations among elements of Z from the corresponding facts of N and
these definitions.

1.2. From Z to Q. A natural way to construct Q from Z is to define elements of
Q as expressions of the form m{n where m P Z and n ‰ 0 P Z. Once again, there
are many ways of representing a given rational number as a quotient of integers,
so we need to say when two such representations are equivalent and work with
equivalence classes. Two representations of the same rational q “ m{n “ m1{n1 are
equivalent if2

(1.2) mn1 “ m1n.

Again we denote by q “ rm{ns the equivalence class of all representations of a given
rational q as a quotient of integers m{n with n ‰ 0.

We would like to define addition and multiplication of rationals in terms of
equivalence classes. Again we have to check that our definitions respect equivalence

1The “backstory” here is that you use FOIL to compute

pm´ nqpp´ qq “ mp` nq ´ np´mq “ pmp` nqq ´ pnp´mqq.

2To derive this condition we compute, using the rules we want to be true (!),

m

n
“

m1

n1

m

n
¨ nn1 “

m1

n1
¨ nn1

mn1 “ m1n



PRINCIPLES OF ANALYSIS - LECTURE NOTES 3

classes. Thus, for example, to add two rationals r1 “ rm{ns and r2r “ rp{qs, we’d
like to say that

r1 ` r2 “ rpmq ` npq{nqs.

In order for this definition to respect equivalence classes, we need to check that if
m{n and m1{n1 are two representatives for r1, and if p{q and p1{q1 are two repre-
sentatives for r2, then

(1.3)
mq ` np

np
“

m1q1 ` n1p1

n1q1

provided

(1.4) mn1 “ m1n, pq1 “ p1q.

To state the condition(1.3) correctly in terms of properties of integers alone, we use
(1.2) to rephrase (1.3) as

(1.5) pmq ` npq ¨ pn1q1q “ pnpqpm1q1 ` n1p1q

which should follow from the conditions (1.4) (does it?). Similarly, we’d like to
define the multiplication of two rational r1 “ rm{ns and r2 “ rp{qs by the equation

(1.6) r1r2 “

„

mp

nq



.

For this notion to be well-defined, we need to know that if m{n, m1{n1 are two
representatives of r1, and p{q, p1{q1 are two representatives of r2, then mp{pnqq “
m1p1{pn1q1q, or more precisely (recall (1.2))

mpn1q1 “ m1p1nq

provided (1.4) holds (check that this is so!).

1.3. From Q to R by Dedekind Cuts. The rationals are closed under the arith-
metic operations of addition, subtraction, multiplication, and division, which means
that simple linear equations like ax ` b “ c can be solved over Q. This is not the
case for algebraic equations such as x2 “ 2 or x3 “ 4, which motivates the definition
of the real numbers R, an extension of the rational numbers Q. Richard Dedekind3

gave a set-theoretic construction of the real numbers from the rationals which we’ll
briefly describe.

For a given rational number q, consider the set

Sq “ tr P Q : r ă qu.

This set has the following properties:

(i) S ‰ H, S ‰ Q,
(ii) If r P S and s ă R, then s P S,
(iii) S has no largest element.

Now let S?2 be the set of all rationals q so that either q ď 0 or q2 ă 2. You can
check (carefully) that this set also has properties (i) - (iii), and might plausibly be
taken as a set-theoretic definition of the irrational number

?
2. Dedekind’s ideas

was to define the real numbers as the set of all possible cuts of the rationals. It
is clear that the mapping q ÞÑ Sq gives a one-to-one map from Q into the set of
cuts (why is it one-to-one?) but, from the example of S?2, it is clearly larger than

3Actually Julius Wilhelm Richard Dedekind (1831-1916), a German mathematician who
worked in abstract algebra, algebraic number theory, and foundations.
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Q. As with our set-theoretic constructions of Z from N and Q from Z, this gives
us a plausible way to deduce the axioms of R from those of Q if we can define the
basic operations (addition, multiplication, division, order) using the language of set
theory.

Again, we won’t attempt an exhaustive exposition of Dedekind’s construction,
but rather focus on a few highlights. For rational numbers, it clearly works to define

Sq`q1 “ tr ` s : r P Sq, s P Sq1u

so we define addition of cuts by the set-theoretic construction

S ` S1 “ tr ` s : r P S, s P S1u.

One needs to check that S ` S1 is in fact a cut in that it satisfies (i)-(iii) above. If
so, then it is very easy to derive the commutative and associative laws of addition
from those same laws for the rationals.

We can also define an order relation on real numbers “inherited” from the set-
theoretic order relation on cuts. We say that S ă S1 if S Ă S1 but S ‰ S1. It is
not hard to deduce from this definition the usual properties of the order relation on
reals, such as trichotomy (one uses the corresponding trichotomy of sets satisfying
(i)–(iii)).

We can also deduce that a monotone increasing, bounded sequence of real num-
bers must have a limit using the language of set theory. Such a sequence corresponds
to a sequence of sets tSnu with the property that

S1 Ă S2 Ă . . . Ă Sn Ă T

for all n and some cut T . One shows that the set

S “
8
ď

n“1

Sn

is a cut, which is then defined to be the limit of the real numbers tSnu (where is
the condition that all of the Sn contained in a fixed cut T used?).

2. The Real Numbers

Here we’d like to state the axioms of the real numbers, state the Least Upper
Bound property, and derive a few basic results about the real numbers. We’ll repair
what appears to be a circularity in the presentation from Beals’ text, section 2A.

We’ll begin with a list of axioms for the real numbers and see where it leads us!

Axioms of Addition.

A1 pa` bq ` c “ a` pb` cq
A2 a` b “ b` a
A3 There is an element 0 so that a` 0 “ a
A4 For each a P R there is an element ´a with a` p´aq “ 0

Axioms of Multiplication.

M1 pabqc “ apbcq
M2 ab “ ba
M3 There is an element 1 ‰ 0 so that, for all a P R, a ¨ 1 “ a
M4 For each a P R with a ‰ 0, there is an element a´1 so that a ¨ a´1 “ 1
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Distributive Law of Multiplication over Addition.

D pa` bqc “ ac` bc; apb` cq “ ab` ac

Order Axioms.

O1 For any a and b, exactly one of the following is true: a ă b, a ą b, a “ b
O2 If a ă b and b ă c, then a ă c
O3 If a ă b, then a` c ă b` c
O4 If a ă b and 0 ă c, then ac ă bc
O5 (Archimedian Property) If 0 ă a and 0 ă b, there is a positive integer n so

that b ă a` a` . . .` a (N summands)
O6 (Least Upper Bound Property) If A is any nonempty subset of R that is

bounded above, then there is a least upper bound for A

2.1. Some basic Propositions.

(a) The elements 0 and 1 are unique
(b) For any a P R, ´a is unique
(c) For any a ‰ 0 in R, a´1 is unique
(d) For any a, ´p´aq “ a and for any a ‰ 0, pa´1q´1 “ a
(e) For any a P R, a ¨ 0 “ 0 and p´1q ¨ a “ ´a
(f) For any a P R, exactly one of the following is true: 0 ă a, 0 ă p´aq, or

a “ 0
(g) For any a, b P R, a ă b if and only if 0 ă b´ a

Before we get started we need to prove the additive cancellation law : if a, b, and
c are real numbers and a` c “ b` c, then a “ b.

Proof. Either a “ b, a ă b or b ă a by O1. Suppose b ă a; then by O3 b`c ă a`c,
a contradiction. Similarly, if a ă b, then a` c ă b` c. Hence, a “ b. �

Using O4 you can prove a similar multiplicative cancellation law–it would be a
good idea to state and prove it to test your understanding of the previous proof!

It’s now easy to prove that the additive identity 0, the multiplicative identity
1, and additive inverse p´aq, and the multiplicative inverse a´1, are all unique.
We use a common strategy: suppose that there are two of the object to be proven

NA first fundamental
proof strategy

unique, and show that they are equal. Here’s how it works for the additive identity
0.

Proof. Suppose that 0 and 01 are both additive identities, and let a be any real
number. Since a` 0 “ a` 01 “ a we may deduce

a` 0 “ a` 01 Property of additive identity

0 “ 01 Cancellation law for addition

and conclude that 0 is unique. �

2.2. Some Slightly Less Basic Propositions.

(a) Given a, b P R, there is a unique x such that a` x “ b
(b) Given a ‰ 0 and b in R, there is a unique y such that ay “ b
(c) If a and b are positive, then a` b and ab are positive
(d) If 0 ă a ă b, then 0 ă 1{b ă 1{a
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We’ll prove (a) and (b) using the additive and multiplicative cancellation laws.
This proof uses a second common strategy for mathematical proof: to show than

NA second fundamental
proof strategy

an object exists and is unique, first exhibit one such object, and then use the
uniqueness proof strategy above to show that the object is uniquely defined.

Proof. (a) To show that such an x exists, let4 x “ b` p´aq. Then

a` x “ a` b` p´aq (definition of x)

“ a` pb` p´aqq by (A1)

“ a` pp´aq ` bq by (A2)

“ pa` p´aqq ` b by (A1)

“ 0` b by (A4)

“ b by (A3)

so we have shown the existence of such an x.
Now suppose that x1 is any other solution. Then a` x “ a` x1 “ b so

a` x “ a` x1 (hypothesis)

x “ x1 (cancellation property)

The proof of (b) is similar. �

You can easily prove (c) and (d) using O3 and O4.

2.3. A Much Less Basic Proposition.

Theorem 2.1. Suppose that b is a positive real number and n is a positive integer.
There is a unique positive real number a such that an “ b.

Proof. First, we note that for any real numbers x and y,

(2.1) yn ´ xn “ py ´ xq
`

yn´1 ` yn´2 ` x` . . .` yxn´2 ` xn´1
˘

which shows that the map x ÞÑ xn preserves order, i.e., x ă y ñ xn ă yn. In a
strategy reminiscent of Dedekind cuts, we try to construct the unique positive nth
root of b as the least upper bound of the set

A “ tx P R : xn ă bu.

The set A is bounded above: if 0 ă b ă 1, any x ą 1 has xn ą 1 by O4 (so 1 is an
upper bound for A), while if b ą 1 and x ą b, then xn ą b again by O4 (so b is an
upper bound for A). Now let

a “ lubpAq.

We claim that an “ b. By trichotomy, either an ă b, an ą b, or an “ b so it suffices
to rule out the other two possibilities. We’ll first show that an ą b. Suppose that

NOne might be tempted
to use proof by contradic-
tion here, but, with apolo-
gies to St. Paul (see Ro-
mans 12:31), Beals will
show you a more excellent
way!

x ą 0 and xn ă b. We claim that there is a y ą x so that, also, yn ă b. Supposing
that y ď x ` 1, we can use (2.1) to estimate yn ´ xn, and will succeed if we can
choose a y so that that yn ´ xn ă pb´ xnq{2 (why?). From (2.1) we can estimate

yn ´ xn ď py ´ xqnpx` 1qn´1

4Once again, the “backstory” is that we do a (suppressed) back of the envelope computation
to see what x should be, but then prove that our suspect x actually works using the axioms for

the real numbers.
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since y ď x` 1 and there are n right-hand terms in (2.1). We can make the right
hand side smaller than pb´ xnq{2 by choosing

py ´ xq ă pb´ xnq{2pnpx` 1qn´1q

which is possible because the right-hand side is positive. Hence, no x with xn ă b
is an upper bound for S, and hence an ě b.

On the other hand, suppose that y is positive and yn ą b. If we can find an
x ă y with b ă xn, it will follow that y is not a least upper bound so that an ď b.
We can assume that x ě y ´ 1 and use a similar technique to show that such an x
can be chosen. �
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