
PRINCIPLES OF ANALYSIS - LECTURE NOTES

PETER A. PERRY

2. Real and Complex Numbers

If A is a subset of R, we say that A is bounded above if there is a real number b
so that a ď b for all a P A. Similarly, A is bounded below if there is a real number
c so that c ď a for all a P A.

An upper bound b is called a least upper bound for A if b ď b1 for every upper
bound b1 of b. A lower bound is called a greatest lower bound for A and c1 ď c or
every lower bound c1 of A.

The following property of R will play a fundamental role in analysis.

O6 If A is a nonempty subset of R that is bounded above, there is a least upper
bound for A.

In fact, the least upper bound and greatest lower bound are unique (why?). The
least upper bound of a set A is denoted supA, and the greatest lower bound of A
is denoted by inf A.

Complex numbers are numbers of the form x`iy where x and y are real numbers
and i is an algebraic object with the property that i2 “ ´1. Complex numbers
z “ x ` iy are in one-to-one correspondence with points px, yq P R2. We denote
x “ Re z, y “ Im z. If z “ x ` iy, the complex number z is x ´ iy, and the real
number |z| “

a

x2 ` y2 is called the modulus of z.
NThis decomposition
was discussed in class
during group work

There is also an analogue of ‘polar coordinates’ in C. For z ‰ 0, write

z “ |z| ¨
z

|z|
.

The scalar |z| is the distance of z from 0, while z{|z| is a complex number of unit
modulus which specifies the ‘direction’ of z. We may write

z “ rw

where r “ |z| is a positive real number, and w “ z{|z| is a complex number of
modulus 1.

The following inequalities will play an important role in the study of limits of
sequences.

(2.1)

|Re z| ď |z|

| Im z| ď |z|

|z| ď |Re z| ` | Im z|

|z ` w| ď |z| ` |w|
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3. Real and Complex Sequences

A sequence from R or C is a list of numbers tznu in one-to-one correspondence
with the positive integers. The following definition is fundamental.

Definition 3.1. The complex sequence tanu converges if there is a complex number
a with the property that, for each ε ą 0, there is an integer N so that n ě N implies
that |an ´ a| ă ε. The number a is called the limit of the sequence tanu, and we
write

a “ lim
nÑ8

an.

Proposition 3.2. A complex sequence an ` ibn has limit a` ib if and only if the
real sequences tanu and tbnu have limits a and b, respectively.

NThis proof was worked
out in class during group
work

Proof. We’ll use the inequalities (2.1).
(ñ) Suppose that an` ibn Ñ a` ib. Then for every ε ą 0, there is an N so that

|pan ` ibnq ´ pa` ibq| ă ε.

Fro the first and second inequalities of (2.1), we conclude that

|an ´ a| ă ε, |bn ´ b| ă ε.

Hence an Ñ a and bn Ñ b.
(ð): Suppose that an Ñ a and bn Ñ b. Then, for every ε ą 0, there is an N so

that for all n ě N ,

|an ´ a| ă ε{2, |bn ´ b| ă ε{2

By the third inequality of (2.1),

|pan ` ibnq ´ pa` ibq| “ |pan ´ aq ` ipbn ´ bq| ď |an ´ a| ` |bn ´ b| ă ε

so that an ` ibn Ñ a` ib. �

3.1. Monotone Sequences. A real sequence tanu is called nondecreasing if

a1 ď a2 ď . . . ď an´1 ď an

for every n. Such a sequence is called nonincreasing if

a1 ě a2 ě . . . ě an´1 ě an

for every n.
A sequence which is either nondecreasing or nonincreasing is called monotone. A

nondecreasing subsequence is bounded below, but not necessarily bounded above.
A nonincreasing subsequence is bounded above, but not necessarily bounded below.

The least upper bound property implies the following fundamental result about
convergence.

Theorem 3.3. Any bounded monotone sequence of reals is convergent.

Proof. We’ll give the proof for a monotone nonincreasing sequence (just for a change
of pace from the text). Denote by tanu the sequence and let a “ inf ptanuq. We
claim that an Ñ a. Let ε ą 0 be given. Since a` ε is not a lower bound for tanu,
there is at least one aN with aN ă a`ε. Since tanu is nonincreasing, a ď an ă a`ε
for all n ě N . Hence an Ñ a. �
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3.2. Lim sup and lim inf. Now suppose that txnu is a bounded sequence of real
numbers. We define two new sequences associated to txnu by

am “ inftxm, xm`1, xm`2, . . .u

bm “ suptxm, xm`1, xm`2, . . .u

The sequence tamu is monotone nondecreasing (deleting elements from the set can
only make its lower bound larger) while tbmu is monotone nonincreasing (deleting
elements from the set can only make its upper bound smaller). This means that
the intervals Im “ ram, bms are nested so that in particular, the sequences tamu
and tbmu are bounded as well as monotone. Hence, they both converge. We define

lim inf xn “ lim
nÑ8

an

lim supxn “ lim
nÑ8

bn

Clearly lim inf xn ď lim supxn.

Theorem 3.4. lim inf xn “ lim supxn if and only if xn converges.

To prove the theorem we’ll given an alternative characterization of the numbers
lim inf xn and lim supxn that lends itself nicely to the proof.

Proposition 3.5. Suppose that txnu is a bounded sequence of real numbers.

(a) lim inf xn “ a if and only if
(i) For every ε ą 0, there are at most a finite number of xn with xn ď a´ε
(ii) For every ε ą 0, there are infinitely many xn with xn ă a` ε.

(b) lim supxn “ b if and only if
(i) For every ε ą 0, there are at most a finite number of xn with xn ě b`ε
(ii) For every ε ą 0, there are infinitely many xn with xn ą b´ ε

Remark 3.6. A good way to think about the characterization of lim inf and lim sup
above is to think of a specific sequence and its graph on the real line. The sequence

xn “ p´1qn `
p´1qn

n

has two cluster points, one at a “ ´1 (the lim inf) and the other at b “ `1 (the
lim sup). Its graph looks like

ˆ ˆ ˆ̂̂ˆ ˆˆ̂ˆ̂̂

a ba´ ε a` ε b´ ε b` ε

Notice that there is only one ‘outlier’ to the left of a´ ε, and similarly only one
‘outlier’ to the right of b`ε. On the other hand, there are infinitely many elements
of the sequence to the left of a` ε, and infinitly many to the right of b´ ε.

Proof. We’ll prove both directions for (a).
(ñ) If lim inf xn “ a, there is an N so that a´ ε ă aN ă a. Since xn ě aN for

all n ě N , this means that at most x1, x2, . . . xN´1 lie to the left of a´ ε, proving
(i). On the other hand, if there were only finitely many n (say, up to xM , with
xn ă a` ε, we would then have aM`1 ě a` ε, which can’t occur. Hence there are
infinitely many such xn, proving (ii).

(ð) Suppose that a is a real number satisfyng (i) and (ii). Statement (i) implies
that, given any ε ą 0, there is an N so that xn ě a ´ ε for all n ě N , and hence
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an ě a´ ε for all such n. This shows that lim inf xn ě a´ ε for any ε ą 0. On the
other hand, statement (ii) implies that aN ă a` ε for all sufficiently large n. Since
a´ ε ď an ă a` ε for all sufficiently large n, it follows that a´ ε ď lim an ă a` ε.
Since lim supxn “ lim an and ε ą 0 is arbitrary, lim sup an “ a. �

Now we can prove the main theorem.

Proof of Theorem 3.4. (ð) Suppose that limxn “ x. For any ε ą 0 there is a
positive integer N so that x´ ε ď xn ď x` ε for all n ě N . Thus xn ď x´ ε for at
most finitely many n, while xn ă x` ε for infinitely many n. Hence x “ lim inf xn.
On the other hand, given ε ą 0, we can use the same fact to conclude that xn ą

x ` ε for at most finitely many n, while xn ą x ´ ε for infinitely many n. Hence
x “ lim supxn.

(ñ) Suppose that lim inf xn “ lim supxn “ x. For any given ε ą 0, there are at
NThis paragraph clari-
fies an obscure point from
the in-class presentation

most finitely many n with xn ą x` ε{2 or xn ă x´ ε{2 by properties a(i) and b(i).
Hence, for some N , x´ ε ă xn ă x` ε for all n ě N .
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