Math 575
Fall 2018

Solutions to Problem Set \# 0

1. (Beals p. 9, 1) (not graded) A good resource for this material are the notes here from Professor Ron Freiwald's web page at Washington University, St. Louis. We define integers $z \in \mathbb{Z}$ as equivalence classes as follows. For pairs (m, n) and $\left(m^{\prime}, n^{\prime}\right)$ of natural numbers, we say that $(m, n) \equiv\left(m^{\prime}, n^{\prime}\right)$ if $m+n^{\prime}=m^{\prime}+n$, and we denote by $[m-n]$ the equivalence class of (m, n).

We wish to addition and multplication of integers by the rule

$$
\begin{aligned}
{[m-n]+[p-q] } & =[(m+p)-(n+q)] \\
{[m-n] \cdot[p-q] } & =[(m p+q n)-(m q+n p)]
\end{aligned}
$$

We need to check that the right-hand sides of both expressions are independent of the choice of representatives for $[m-n]$ and $[p-q]$. Thus, suppose that $(m, n) \equiv\left(m^{\prime}, n^{\prime}\right)$ and $(p, q) \equiv\left(p^{\prime}, q^{\prime}\right)$. That is,

$$
\begin{align*}
m+n^{\prime} & =m^{\prime}+n \tag{1}\\
p+q^{\prime} & =p^{\prime}+q \tag{2}
\end{align*}
$$

We need to check that

$$
\begin{equation*}
(m+p)+\left(n^{\prime}+q^{\prime}\right)=\left(m^{\prime}+p^{\prime}\right)+(n+q) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
(m p+q n)+\left(m^{\prime} q^{\prime}+n^{\prime} p^{\prime}\right)=\left(m^{\prime} p^{\prime}+q^{\prime} n^{\prime}\right)+(m q+n p) \tag{4}
\end{equation*}
$$

given (1) and (2).
Proving (3) is easy: adding (1) and (2) gives the desired equality.
To prove (4), we use (1)-(2) to conclude that

$$
\begin{aligned}
& p\left(m+n^{\prime}\right)+q\left(m^{\prime}+n\right)+m^{\prime}\left(p+q^{\prime}\right)+n^{\prime}\left(p^{\prime}+q\right)= \\
& \quad p\left(n+m^{\prime}\right)+q\left(m+n^{\prime}\right)+m^{\prime}\left(p^{\prime}+q\right)+n^{\prime}\left(p+q^{\prime}\right)
\end{aligned}
$$

Using the distributive and commutative laws we can recast this equation as

$$
\begin{aligned}
& \left(m p+n q+n^{\prime} p^{\prime}+m^{\prime} q^{\prime}\right)+\left(n^{\prime} p+m^{\prime} q+m^{\prime} p+n^{\prime} q\right)= \\
& \quad\left(n p+m q+m^{\prime} p^{\prime}+n^{\prime} q^{\prime}\right)+\left(n^{\prime} p+m^{\prime} q+m^{\prime} p+n^{\prime} q\right)
\end{aligned}
$$

and use the cancellation law to conclude that (4) holds.
2. (2 points) (Beals p. 9, 14) Suppose there is a rational $r=p / q$ (written in lowest terms) with $r^{3}=2$. Then $p^{3}=2 q^{3}$ so that p is even, say $p=2 m$. Hence $8 m^{3}=2 q^{3}$ or $q^{3}=4 m^{3}$ which shows that q is also even. But p and q were assumed to be in lowest terms, a contradiction.
3. (2 points) (Beals, p. 12, 1) Suppose that S and S^{\prime}. If $S \neq S^{\prime}$, then either
(i) There exists $q \in S$ with $q \notin S^{\prime}$ or
(ii) There exists $q \in S^{\prime}$ with $q \notin S$

In case (i) it follows that any $r \in S^{\prime}$ satisfies $r<q$, since otherwise q would be an element of S^{\prime}. This means that $S^{\prime} \subset S$.

In case (ii) it follows that any $r \in S$ satisfies $r<q$ since otherwise q would be an elment of S^{\prime}. Thus $S \subset S^{\prime}$.
4. (6 points) (Beals, p. 12, 2) Suppose that S and S^{\prime} are cuts and define

$$
S+S^{\prime}=\left\{r+r^{\prime}: r \in S, r \in S^{\prime}\right\}
$$

We claim that $S+S^{\prime}$ is a cut.
(i) First $S+S^{\prime}$ is non empty since S and S^{\prime} are each nonempty. There exist $q, q^{\prime} \in Q$ with $q>r$ for all $r \in S$ and $q^{\prime}>r^{\prime}$ for all $r^{\prime} \in S^{\prime}$. Thus $q+q^{\prime}>r+r^{\prime}$ for all such r, r^{\prime}, so $q+q^{\prime} \notin S+S^{\prime}$. Hence $S+S^{\prime} \neq \mathbb{Q}$.
(ii) Suppose that $r \in S+S^{\prime}$. This means that $r=q+q^{\prime}$ for some $q \in S$ and $q^{\prime} \in S^{\prime}$. We wish to show that any $s<r$ also belongs to $S+S^{\prime}$. We may write $s=q+q^{\prime}-(r-s)=[q-(r-s)]+q^{\prime}$ and use the fact that $q-(r-s) \in S$ to conclude that $s \in S+S^{\prime}$.
(iii) Suppose $S+S^{\prime}$ has a largest element $r+r^{\prime}$ with $r \in S$ and $r^{\prime} \in S^{\prime}$. Neither r nor r^{\prime} are largest elements in S or S^{\prime}, so we can find $r_{1}>r$ and $r_{1}^{\prime}>r^{\prime}$ so that $r_{1} \in S$ and $r_{1}^{\prime} \in S^{\prime}$. But then $r_{1}+r_{1}^{\prime} \in S+S^{\prime}$, contradicting the assumption that $r+r^{\prime}$ is the largest element of $S+S^{\prime}$.

