Math 575
Fall 2018
Solutions to Problem Set \# 1
(1) (p. 14, 1) (2 points) Suppose that a and b are two real numbers If $a=b$ then for any $\varepsilon>0,|a-b|=0<\varepsilon$. On the other hand, suppose that, given any $\varepsilon>0,|a-b|<\varepsilon$. Then $a-\varepsilon<b$ and $b<a+\varepsilon$. The first inequality shows that $a \leq b$ and the second inequality shows that $b \leq a$. Hence $a=b$.
(2) (p. 20, 4) (4 points) Suppose that A and B are nonempty subsets of \mathbb{R}, and suppose that both A and B are bounded above.
(i) (2 points) Let $-A=\{-a: a \in A\}$. Let $b=\sup A$. We claim that $\inf (-A)=-b$. First, since $a \leq b$ for any $a \in A,-b \leq-a$ for any such A, so $-b$ is a lower bound. If $-b$ is not the greatest lower bound, there is a lower bound c with $-b<c$ and $c<-a$ for every $a \in A$. Then $-c>a$ for every $a \in A$ and $-c<b$, contradicting the fact that b is the least upper bound of A. Hence $\inf (-A)=-\sup A$ as claimed.
(ii) (2 points) Let $A+B=\{a+b: a \in A, b \in B\}$. We claim that $\sup (A+B)=\sup A+\sup B$. Since $a \leq \sup (A)$ and $b \leq \sup (B)$ for any $a \in A$ and $b \in B$, it is clear that $a+b \leq \sup (A)+\sup (B)$, so $\sup (A)+\sup (B)$ is an upper bound for $A+B$. Suppose that there is a number $c<\sup (A)+$ $\sup (B)$ with the property that $a+b \leq c$ for all $c \in A+B$. Choose ε so that $c+\varepsilon<\sup (A)+\sup (B)$, and choose $b \in B$ so that $b>\sup (B)-\varepsilon / 2$. Then, for any $a \in A$,

$$
\begin{aligned}
a+b & <\sup (A)+\sup (B)-\varepsilon \\
b & >\sup (B)-\varepsilon / 2
\end{aligned}
$$

so, on subtraction, we see

$$
a<\sup (A)-\varepsilon / 2
$$

for every $a \in A$. This means that $\sup (A)-\varepsilon / 2$ is an upper bound for A contradicting the fact that $\sup (A)$ is the least upper bound. Hence $\sup (A)+\sup (B)$ is the least upper bound of $A+B$.
(3) (p. 20, 5) (4 points) Let $I_{n}=\left[a_{n}, b_{n}\right]$. By assumption $a_{1} \leq a_{2} \leq \ldots \leq$ $a_{n} \leq \ldots$ and $b_{1} \geq b_{2} \geq \ldots \geq b_{n} \geq \ldots$. The set $\left\{a_{n}\right\}$ is bounded above by b_{1} and hence has a least upper bound, a. The set $\left\{b_{n}\right\}$ is bounded below by a_{1} and hence has a greatest lower bound, b. Since $a_{n} \leq b_{m}$ for all n and m, it follows that $a \leq b_{n}$ for all n, hence $a \leq b$. Moreover, since $a_{n} \leq a \leq b \leq b_{n}$ for every n, it follows that $|b-a| \leq\left|b_{n}-a_{n}\right|$ for all n. Hence $|b-a|<\varepsilon$ for all $\varepsilon>0$, and, by page 14 problem 1 , it now follows that $a=b$. Hence $a=b \in \bigcup_{n=1}^{\infty} I_{n}$. Moreover, a is the only such point since, for any $x \in \bigcap_{n=1}^{\infty} I_{n}$, we must have $a \leq x \leq b$.
(4) (p. 28, 5) (Not graded) Let $w \in \mathbb{C}$ be given. Since w is nonzero we may write $w=r v$ where $r=|w|$ and $v=(|w|)^{-1} w$. This gives the desired polar decomposition.
(5) (p. 28, 7) (Not graded) Algebraically, we may set $z=x+i y$ and compute

$$
\begin{aligned}
|z-i|^{2} & =|z+i|^{2} \\
x^{2}+(y-1)^{2} & =x^{2}+(y+1)^{2} \\
(y-1)^{2} & =(y+1)^{2}
\end{aligned}
$$

and conclude that $y=0$. Thus $\operatorname{Im} z=0$ so that the set of points satisfying this condition is the real line.

Geometrically, \mathbb{R} is the set of points P equidistant from $z=i$ and $z=-i$.

