## $\begin{array}{c} {\rm Math~575}\\ {\rm Fall~2018}\\ {\rm Solutions~to~Problem~Set~\#~1} \end{array}$

- (1) (p. 14, 1) (2 points) Suppose that a and b are two real numbers If a = b then for any  $\varepsilon > 0$ ,  $|a b| = 0 < \varepsilon$ . On the other hand, suppose that, given any  $\varepsilon > 0$ ,  $|a b| < \varepsilon$ . Then  $a \varepsilon < b$  and  $b < a + \varepsilon$ . The first inequality shows that  $a \le b$  and the second inequality shows that  $b \le a$ . Hence a = b.
- (2) (p. 20, 4) (4 **points**) Suppose that A and B are nonempty subsets of  $\mathbb{R}$ , and suppose that both A and B are bounded above.

(i) (2 points) Let  $-A = \{-a : a \in A\}$ . Let  $b = \sup A$ . We claim that  $\inf(-A) = -b$ . First, since  $a \leq b$  for any  $a \in A$ ,  $-b \leq -a$  for any such A, so -b is a lower bound. If -b is not the greatest lower bound, there is a lower bound c with -b < c and c < -a for every  $a \in A$ . Then -c > a for every  $a \in A$  and -c < b, contradicting the fact that b is the least upper bound of A. Hence  $\inf(-A) = -\sup A$  as claimed.

(ii) (2 points) Let  $A + B = \{a + b : a \in A, b \in B\}$ . We claim that  $\sup(A + B) = \sup A + \sup B$ . Since  $a \leq \sup(A)$  and  $b \leq \sup(B)$  for any  $a \in A$  and  $b \in B$ , it is clear that  $a+b \leq \sup(A)+\sup(B)$ , so  $\sup(A)+\sup(B)$  is an upper bound for A+B. Suppose that there is a number  $c < \sup(A) + \sup(B)$  with the property that  $a + b \leq c$  for all  $c \in A + B$ . Choose  $\varepsilon$  so that  $c + \varepsilon < \sup(A) + \sup(B)$ , and choose  $b \in B$  so that  $b > \sup(B) - \varepsilon/2$ . Then, for any  $a \in A$ ,

$$a + b < \sup(A) + \sup(B) - \varepsilon$$
  
 $b > \sup(B) - \varepsilon/2$ 

so, on subtraction, we see

$$a < \sup(A) - \varepsilon/2$$

for every  $a \in A$ . This means that  $\sup(A) - \varepsilon/2$  is an upper bound for A contradicting the fact that  $\sup(A)$  is the least upper bound. Hence  $\sup(A) + \sup(B)$  is the least upper bound of A + B.

- (3) (p. 20, 5) (4 points) Let  $I_n = [a_n, b_n]$ . By assumption  $a_1 \leq a_2 \leq \ldots \leq a_n \leq \ldots$  and  $b_1 \geq b_2 \geq \ldots \geq b_n \geq \ldots$ . The set  $\{a_n\}$  is bounded above by  $b_1$  and hence has a least upper bound, a. The set  $\{b_n\}$  is bounded below by  $a_1$  and hence has a greatest lower bound, b. Since  $a_n \leq b_m$  for all n and m, it follows that  $a \leq b_n$  for all n, hence  $a \leq b$ . Moreover, since  $a_n \leq a \leq b \leq b_n$  for every n, it follows that  $|b a| \leq |b_n a_n|$  for all n. Hence  $|b a| < \varepsilon$  for all  $\varepsilon > 0$ , and, by page 14 problem 1, it now follows that a = b. Hence  $a = b \in \bigcup_{n=1}^{\infty} I_n$ . Moreover, a is the only such point since, for any  $x \in \bigcap_{n=1}^{\infty} I_n$ , we must have  $a \leq x \leq b$ .
- (4) (p. 28, 5) (Not graded) Let  $w \in \mathbb{C}$  be given. Since w is nonzero we may write w = rv where r = |w| and  $v = (|w|)^{-1}w$ . This gives the desired polar decomposition.

(5) (p. 28, 7) (Not graded) Algebraically, we may set z = x + iy and compute

$$|z - i|^{2} = |z + i|^{2}$$
$$x^{2} + (y - 1)^{2} = x^{2} + (y + 1)^{2}$$
$$(y - 1)^{2} = (y + 1)^{2}$$

and conclude that y = 0. Thus Im z = 0 so that the set of points satisfying this condition is the real line.

Geometrically,  $\mathbb{R}$  is the set of points P equidistant from z = i and z = -i.

