Math 575
Fall 2018
Solutions to Problem Set # 10

(1) (p. 91, 1) Suppose that f obeys

fl@+y) =Ffz)+ fy)
Clearly f(2x) = 2f(z) (by taking z = y). We claim that, also f(2"z) =
2" f(x). Given that this identity holds for all n < N. we compute

FEN*a) = f(2V2) + f(2V2)
=2f(2"x)
= oNFL £ ().
We seek to show that f(x) = ax where a = f(1). The basic identity extends

to show that
N N
1(%n) -2
i=1 i=1
Moreover, since f(2Vx) = 2" f(z), it follows that
@) =277f(1)
by taking N = j and # = 277. Hence, for any dyadic rational in [0,1], i.e.,

any number z that can be written as

n

o i=1 2
where a; =0 or 1,
flx) =z f(1).

A similar argument shows that (z) = zf(1) for z € [-1,0]. Next, any
dyadic rational z in R can be written as 2™y for some y € [—1,1], so we
can conclude that f(z) = xzf(1) for all dyadic rationals. Since the dyadic
rationals are dense in R, it then follows by continuity that f(z) = xf(1)
for all real x.



(2) (p. 91, 3) The following very nice proof is due to a former student, Kristina
Pepe.

Ll(w)

1) S

We’ll show that f is continuous at p using the “squeeze theorem.” We’ll
use the convexity of f to show that the inequalities

Li(z) < f(z) < Lo(x), x€(p—rp)
Ly(x) < f(z) < Li(z), w€(pp+r)

hold for some fixed r > 0, where

flp+7)—f(p)

(1)

Ly(z) = " (z —p)+ f(p),
L) = P20 ) ),

If the inequalities (1) hold, then
lin f(a) = lim_f(a) = /(p)
T—p

z—p
which shows that f is continuous at p.
Let’s prove the inequalities (1). For x € (p,p + r) we write
x=(1—-t)p+t(p+r)
for some t € (0,1). In fact, ¢ = (x — p)/r. By convexity

f@)é<1—x_p)f@%+x;pﬂp+ﬂ

= Li(p)

A similar proof shows that Lo(z) < f(x) for z € (p — r, p).

To show the remaining inequalities we use, believe it or not, proof by
contradiction. To show that La(z) < f(x) for z € (p,p+1), suppose to the
contrary that La(xg) > f(zo) for some zg € (p,p+7). Since p—r < p < o,
we may write
r

=(1—t)(p—7) +tzy, t=—"
p=1—-1t)(p—r)+txo, Zo—pir

and use convexity of f to conclude that

To—p r
f(p) < mf(l’*”")*mf(xo)- (2)
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On the other hand, if f(z¢) < L2(xo), it follows from the definition of Lo (x)

that
o) < IR ZD ) 4 i)
flao) + L p(p - 1) < L pp)

so that, dividing both sides by the positive number (zo—p+7r)/r, we obtain
Lo — P
———f(x0) + ———f(p—71) <
p— ~f (o) p—— Sfp—1) < f(p)
which contradicts (2). Hence, La(x) < f(x) for x € (p,p+ 7).
A similar proof shows that Li(x) < f(z) for x € (p — 1, p).



(3) (p- 94, 1) This problem deserves its own two pages!

In what follows we will use the fact that if {a,} is a sequence of positive
real numbers and loga, — —oo, then a,, — 0. We also make use of the
“compound interest formula”

nb
lim (1 + E) = e,
n— oo n
(a) Let f,(z) = nz?(1—2)". Note that f,(0) = f,(1) =0. For 0 < z < 1,
we compute

1

log fn(x) =n (ogn + log(1 — x)) — —00
n

50 fn(x) — 0 as n — oo for all z € [0, 1]. Thus f,(z) — 0 uniformly if

and only if M, = sup,¢o 1) |f»(2)| converges to zero. Since

ful@) 2

fly =« 1-—=2
f has a unique critical point at x = 2/(n + 2). Thus

4n 2\"
My=—-(1+=
<n+2>2< *n)

which tends to zero since the first right-hand factor tends to zero and

the second right-hand factor converges to e~2. Hence f, — 0 uni-

formly.
(b) Let f(z) =n2z(1 —22)". Again £,(0) = f,(1) = 0 while for 0 < z <
L
21 1
log fru(z) =n < AL Oix + log(1 — xZ)) — —00

$0 fn(x) = 0 as n — oo for all z. For this function
fo(x) 1 2nx

flz) =« 1—2a2

so the unique critical point in (0,1) occurs at x,, = v/2n + 1. A com-
putation shows that

n? 1\ "
M, — —(1+ — .
2n+1 ( +2n>

The first factor diverges while the second factor converges to e~
Hence f,, does not converge uniformly to 0.

(c) Let fn(z) = n2a3e="*". Then f,(0) = 0 and f,(1) = n2e™™ — 0 as
n — oo. For 0 < x < 1 we have

21 31
logfn(x):n< AL Ogm—xQ)
n

n
$0 fn(xz) = 0 as n — oo for all z € [0, 1]. Since

fulz) _ 3

= — —2nx

/2

— —00




f has a unique critical point at z,, = (3/(2n))"/2. Thus

3
fn(xn) — Tl2 (\/g) 673/2

which diverges as n — oco. Hence f, does not converge to zero uni-
formly.
2

< 1
0asn — oo. For 0 < z <1 we have
2
fulz) < ’ —0asn— o0

2
(1+n2) (22 - 202,
so that f,(z) — 0 for all x € [0,1]. To find the interior critical point
we use the quotient rule to compute
(nz — Dz

!
= (-2
ful@) = )(ac2 —2nx +n2z? +1
so that x, = 1/n. We compute f,(z,) = 1 which shows that f,(z)
does not converge to 0 uniformly.




(4) (p- 94, 2)

(a)

Suppose that {f,} is a sequence of functions from A which converges
in C(I) to a limit function f. Since |f,(z)| < 1 and f,(z) — f(z)
as n — oo for each z, it follows that |f(z)| <1 for all z € I, so that
f € A. Hence A is closed.

Second, for any f € A. |f(x)| < 1forall z € I, so that |f| < 1. Hence,
A is a bounded set.

Let f,(z) = 2™ and consider the function

Inm(2) = [frim(2) — fu(x)] = 2™ (1 —2™).
Note that gn m(z) > 0 and gnm(0) = gnm(1) = 0, so the maximum
occurs at an interior critical point. To find it we compute

Inm(®)  n mam?

In.m () Tz 1—2am

so that the critical point is @, ., = (n/(n 4+ m))*/™. Thus

9 Tn,m .
nm m n + m n + m

As m — oo, the second factor goes to 1 while the first factor also goes
to 1 as m — oo for fixed n since

n n/m
( ) _ e(n/m) log(l—m/(n-t,-m)).

n-—+m

This shows that || frntm — full = 1 as m — .

(5) (p. 94, 6)

(a)

The set A of complex numbers of the form p+iqg with p, ¢ € Q is in one-
to-one correspondence with Q x Q which, as a finite cartesian product
of countable sets, is countable. Given z = = + iy there are sequences
{pn} and {g¢,} from Q so that p,, — x, ¢, — y as n — oo. Thus given
any z and € > 0, we can find p +ig € A with |z — (p +ig)| < e. This
shows that A is dense in C.

Fix an interval I = [a, b]. We will show that polynomials with rational
coefficients form a countable dense subset of C'(I).

First, observe that he set Q,, of polynomials of degree n with rational
coefficients is countable because it lies in one-to-one correspondence
with Q"*!. Since the set of rational polynomials Q is given by Q =
US Qn, it follows that Q is countable.

Next, note that, given ¢ > 0 and a polynomial P, is a polynomial
with real coefficients, there is a Q,, € Q,, with || P, — Q|| < &/2. ‘This
follows from the fact that, for any polynomials P = Z?:o oz’ and

Q= Z;L:o Bjxjv

1P = @nll <185 — a;] max(|al, [b])7.

Jj=1
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Finally, given any € > 0 and any f € C(I), we can find a polynomial
P, with || f — P|| < /2. by the Weierstrass polynomial approximation
theorem.

Combining these observations, we see that, given any € > 0 and an
f € C(I), there is a polynomial @,, with rational coefficients such that
If = @Qnll <e.



