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Solutions to Problem Set # 10

(1) (p. 91, 1) Suppose that f obeys

f(x+ y) = f(x) + f(y)

Clearly f(2x) = 2f(x) (by taking x = y). We claim that, also f(2nx) =
2nf(x). Given that this identity holds for all n ≤ N . we compute

f(2N+1x) = f(2Nx) + f(2Nx)

= 2f(2Nx)

= 2N+1f(x).

We seek to show that f(x) = ax where a = f(1). The basic identity extends
to show that

f

(
N∑
i=1

xi

)
=

N∑
i=1

f(xi).

Moreover, since f(2Nx) = 2nf(x), it follows that

f(2−j) = 2−jf(1)

by taking N = j and x = 2−j . Hence, for any dyadic rational in [0, 1], i.e.,
any number x that can be written as

x =

n∑
i=1

ai
2i

where ai = 0 or 1,
f(x) = xf(1).

A similar argument shows that (x) = xf(1) for x ∈ [−1, 0]. Next, any
dyadic rational x in R can be written as 2my for some y ∈ [−1, 1], so we
can conclude that f(x) = xf(1) for all dyadic rationals. Since the dyadic
rationals are dense in R, it then follows by continuity that f(x) = xf(1)
for all real x.
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(2) (p. 91, 3) The following very nice proof is due to a former student, Kristina
Pepe.

f(x)

p

f(p)

L1(x)

L2(x)

We’ll show that f is continuous at p using the “squeeze theorem.” We’ll
use the convexity of f to show that the inequalities

L1(x) ≤ f(x) ≤ L2(x), x ∈ (p− r, p)
L2(x) ≤ f(x) ≤ L1(x), x ∈ (p, p+ r)

(1)

hold for some fixed r > 0, where

L1(x) =
f(p+ r)− f(p)

r
(x− p) + f(p),

L2(x) =
f(p)− f(p− r)

r
(x− p) + f(p).

If the inequalities (1) hold, then

lim
x→p−

f(x) = lim
x→p+

f(x) = f(p)

which shows that f is continuous at p.

Let’s prove the inequalities (1). For x ∈ (p, p+ r) we write

x = (1− t)p+ t(p+ r)

for some t ∈ (0, 1). In fact, t = (x− p)/r. By convexity

f(x) ≤
(

1− x− p
r

)
f(p) +

x− p
r

f(p+ r)

= L1(p)

A similar proof shows that L2(x) ≤ f(x) for x ∈ (p− r, p).
To show the remaining inequalities we use, believe it or not, proof by

contradiction. To show that L2(x) < f(x) for x ∈ (p, p+ r), suppose to the
contrary that L2(x0) ≥ f(x0) for some x0 ∈ (p, p+r). Since p−r < p < x0,
we may write

p = (1− t)(p− r) + tx0, t =
r

x0 − p+ r

and use convexity of f to conclude that

f(p) ≤ x0 − p
x0 − p+ r

f(p− r) +
r

x0 − p+ r
f(x0). (2)
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On the other hand, if f(x0) < L2(x0), it follows from the definition of L2(x)
that

f(x0) <
f(p)− f(p− r)

r
(x0 − p) + f(p)

or

f(x0) +
x0 − p
r

f(p− r) < x0 − p+ r

r
f(p)

so that, dividing both sides by the positive number (x0−p+r)/r, we obtain

r

x0 − p+ r
f(x0) +

x0 − p
x0 − p+ r

f(p− r) < f(p)

which contradicts (2). Hence, L2(x) < f(x) for x ∈ (p, p+ r).
A similar proof shows that L1(x) < f(x) for x ∈ (p− r, p).
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(3) (p. 94, 1) This problem deserves its own two pages!

In what follows we will use the fact that if {an} is a sequence of positive
real numbers and log an → −∞, then an → 0. We also make use of the
“compound interest formula”

lim
n→∞

(
1 +

a

n

)nb
= eab.

(a) Let fn(x) = nx2(1−x)n. Note that fn(0) = fn(1) = 0. For 0 < x < 1,
we compute

log fn(x) = n

(
log n

n
+ log(1− x)

)
→ −∞

so fn(x)→ 0 as n→∞ for all x ∈ [0, 1]. Thus fn(x)→ 0 uniformly if
and only if Mn = supx∈[0,1] |fn(x)| converges to zero. Since

f ′n(x)

f(x)
=

2

x
+

n

1− x
f has a unique critical point at x = 2/(n+ 2). Thus

Mn =
4n

(n+ 2)2

(
1 +

2

n

)n

which tends to zero since the first right-hand factor tends to zero and
the second right-hand factor converges to e−2. Hence fn → 0 uni-
formly.

(b) Let fn(x) = n2x(1− x2)n. Again fn(0) = fn(1) = 0 while for 0 < x <
1,

log fn(x) = n

(
2 log n

n
+

log x

n
+ log(1− x2)

)
→ −∞

so fn(x)→ 0 as n→∞ for all x. For this function

f ′n(x)

f(x)
=

1

x
− 2nx

1− x2

so the unique critical point in (0, 1) occurs at xn =
√

2n+ 1. A com-
putation shows that

Mn −
n2

2n+ 1

(
1 +

1

2n

)−n
.

The first factor diverges while the second factor converges to e−1/2.
Hence fn does not converge uniformly to 0.

(c) Let fn(x) = n2x3e−nx
2

. Then fn(0) = 0 and fn(1) = n2e−n → 0 as
n→∞. For 0 < x < 1 we have

log fn(x) = n

(
2 log n

n
+

3 log x

n
− x2

)
→ −∞

so fn(x)→ 0 as n→∞ for all x ∈ [0, 1]. Since

f ′n(x)

fn(x)
=

3

x
− 2nx
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f has a unique critical point at xn = (3/(2n))1/2. Thus

fn(xn) = n2

(√
3

2n

)3

e−3/2

which diverges as n → ∞. Hence fn does not converge to zero uni-
formly.

(d) Let fn(x) =
x2

x2 + (1− nx)2
. Then fn(0) = 0 and fn(1) = 1

1+(n−1)2 →

0 as n→∞. For 0 < x < 1 we have

fn(x) ≤ x2

(1 + n2)
(
x2 − 2nx

1+n2

) → 0 as n→∞

so that fn(x) → 0 for all x ∈ [0, 1]. To find the interior critical point
we use the quotient rule to compute

f ′n(x) = (−2)
(nx− 1)x

(x2 − 2nx+ n2x2 + 1

so that xn = 1/n. We compute fn(xn) = 1 which shows that fn(x)
does not converge to 0 uniformly.
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(4) (p. 94, 2)

(a) Suppose that {fn} is a sequence of functions from A which converges
in C(I) to a limit function f . Since |fn(x)| ≤ 1 and fn(x) → f(x)
as n → ∞ for each x, it follows that |f(x)| ≤ 1 for all x ∈ I, so that
f ∈ A. Hence A is closed.
Second, for any f ∈ A. |f(x)| ≤ 1 for all x ∈ I, so that |f | ≤ 1. Hence,
A is a bounded set.

(b) Let fn(x) = xn and consider the function

gn,m(x) = |fn+m(x)− fn(x)| = xn (1− xm) .

Note that gn,m(x) ≥ 0 and gn,m(0) = gn,m(1) = 0, so the maximum
occurs at an interior critical point. To find it we compute

g′n,m(x)

gn,m(x)
=
n

x
− mxm−1

1− xm

so that the critical point is xn,m = (n/(n+m))1/m. Thus

gn,m(xn,m) =

(
n

n+m

)n/m(
m

n+m

)
.

As m→∞, the second factor goes to 1 while the first factor also goes
to 1 as m→∞ for fixed n since(

n

n+m

)n/m

= e(n/m) log(1−m/(n+m)).

This shows that ‖fn+m − fn‖ → 1 as m→∞.

(5) (p. 94, 6)
(a) The set A of complex numbers of the form p+iq with p, q ∈ Q is in one-

to-one correspondence with Q×Q which, as a finite cartesian product
of countable sets, is countable. Given z = x + iy there are sequences
{pn} and {qn} from Q so that pn → x, qn → y as n→∞. Thus given
any z and ε > 0, we can find p+ iq ∈ A with |z − (p+ iq)| < ε. This
shows that A is dense in C.

(b) Fix an interval I = [a, b]. We will show that polynomials with rational
coefficients form a countable dense subset of C(I).
First, observe that he set Qn of polynomials of degree n with rational
coefficients is countable because it lies in one-to-one correspondence
with Qn+1. Since the set of rational polynomials Q is given by Q =
∪∞n=0Qn, it follows that Q is countable.

Next, note that, given ε > 0 and a polynomial Pn is a polynomial
with real coefficients, there is a Qn ∈ Qn with ‖Pn−Qn‖ < ε/2. This
follows from the fact that, for any polynomials P =

∑n
j=0 αjx

j and

Q =
∑n

j=0 βjx
j ,

‖Pn −Qn‖ ≤
n∑

j=1

|βj − αj | max(|a|, |b|)j .
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Finally, given any ε > 0 and any f ∈ C(I), we can find a polynomial
Pn with ‖f −P‖ < ε/2. by the Weierstrass polynomial approximation
theorem.

Combining these observations, we see that, given any ε > 0 and an
f ∈ C(I), there is a polynomial Qn with rational coefficients such that
‖f −Qn‖ < ε.


