Math 575

Fall 2018

Solutions to Problem Set \# 10

(1) (p. 91, 1) Suppose that f obeys

$$
f(x+y)=f(x)+f(y)
$$

Clearly $f(2 x)=2 f(x)$ (by taking $x=y$). We claim that, also $f\left(2^{n} x\right)=$ $2^{n} f(x)$. Given that this identity holds for all $n \leq N$. we compute

$$
\begin{aligned}
f\left(2^{N+1} x\right) & =f\left(2^{N} x\right)+f\left(2^{N} x\right) \\
& =2 f\left(2^{N} x\right) \\
& =2^{N+1} f(x)
\end{aligned}
$$

We seek to show that $f(x)=a x$ where $a=f(1)$. The basic identity extends to show that

$$
f\left(\sum_{i=1}^{N} x_{i}\right)=\sum_{i=1}^{N} f\left(x_{i}\right)
$$

Moreover, since $f\left(2^{N} x\right)=2^{n} f(x)$, it follows that

$$
f\left(2^{-j}\right)=2^{-j} f(1)
$$

by taking $N=j$ and $x=2^{-j}$. Hence, for any dyadic rational in [0, 1], i.e., any number x that can be written as

$$
x=\sum_{i=1}^{n} \frac{a_{i}}{2^{i}}
$$

where $a_{i}=0$ or 1 ,

$$
f(x)=x f(1)
$$

A similar argument shows that $(x)=x f(1)$ for $x \in[-1,0]$. Next, any dyadic rational x in \mathbb{R} can be written as $2^{m} y$ for some $y \in[-1,1]$, so we can conclude that $f(x)=x f(1)$ for all dyadic rationals. Since the dyadic rationals are dense in \mathbb{R}, it then follows by continuity that $f(x)=x f(1)$ for all real x.
(2) (p. 91, 3) The following very nice proof is due to a former student, Kristina Pepe.

We'll show that f is continuous at p using the "squeeze theorem." We'll use the convexity of f to show that the inequalities

$$
\begin{array}{ll}
L_{1}(x) \leq f(x) \leq L_{2}(x), & x \in(p-r, p) \\
L_{2}(x) \leq f(x) \leq L_{1}(x), & x \in(p, p+r) \tag{1}
\end{array}
$$

hold for some fixed $r>0$, where

$$
\begin{aligned}
& L_{1}(x)=\frac{f(p+r)-f(p)}{r}(x-p)+f(p), \\
& L_{2}(x)=\frac{f(p)-f(p-r)}{r}(x-p)+f(p) .
\end{aligned}
$$

If the inequalities (1) hold, then

$$
\lim _{x \rightarrow p^{-}} f(x)=\lim _{x \rightarrow p^{+}} f(x)=f(p)
$$

which shows that f is continuous at p.
Let's prove the inequalities (1). For $x \in(p, p+r)$ we write

$$
x=(1-t) p+t(p+r)
$$

for some $t \in(0,1)$. In fact, $t=(x-p) / r$. By convexity

$$
\begin{aligned}
f(x) & \leq\left(1-\frac{x-p}{r}\right) f(p)+\frac{x-p}{r} f(p+r) \\
& =L_{1}(p)
\end{aligned}
$$

A similar proof shows that $L_{2}(x) \leq f(x)$ for $x \in(p-r, p)$.
To show the remaining inequalities we use, believe it or not, proof by contradiction. To show that $L_{2}(x)<f(x)$ for $x \in(p, p+r)$, suppose to the contrary that $L_{2}\left(x_{0}\right) \geq f\left(x_{0}\right)$ for some $x_{0} \in(p, p+r)$. Since $p-r<p<x_{0}$, we may write

$$
p=(1-t)(p-r)+t x_{0}, \quad t=\frac{r}{x_{0}-p+r}
$$

and use convexity of f to conclude that

$$
\begin{equation*}
f(p) \leq \frac{x_{0}-p}{x_{0}-p+r} f(p-r)+\frac{r}{x_{0}-p+r} f\left(x_{0}\right) \tag{2}
\end{equation*}
$$

On the other hand, if $f\left(x_{0}\right)<L_{2}\left(x_{0}\right)$, it follows from the definition of $L_{2}(x)$ that

$$
f\left(x_{0}\right)<\frac{f(p)-f(p-r)}{r}\left(x_{0}-p\right)+f(p)
$$

or

$$
f\left(x_{0}\right)+\frac{x_{0}-p}{r} f(p-r)<\frac{x_{0}-p+r}{r} f(p)
$$

so that, dividing both sides by the positive number $\left(x_{0}-p+r\right) / r$, we obtain

$$
\frac{r}{x_{0}-p+r} f\left(x_{0}\right)+\frac{x_{0}-p}{x_{0}-p+r} f(p-r)<f(p)
$$

which contradicts (2). Hence, $L_{2}(x)<f(x)$ for $x \in(p, p+r)$.
A similar proof shows that $L_{1}(x)<f(x)$ for $x \in(p-r, p)$.
(3) (p. 94, 1) This problem deserves its own two pages!

In what follows we will use the fact that if $\left\{a_{n}\right\}$ is a sequence of positive real numbers and $\log a_{n} \rightarrow-\infty$, then $a_{n} \rightarrow 0$. We also make use of the "compound interest formula"

$$
\lim _{n \rightarrow \infty}\left(1+\frac{a}{n}\right)^{n b}=e^{a b} .
$$

(a) Let $f_{n}(x)=n x^{2}(1-x)^{n}$. Note that $f_{n}(0)=f_{n}(1)=0$. For $0<x<1$, we compute

$$
\log f_{n}(x)=n\left(\frac{\log n}{n}+\log (1-x)\right) \rightarrow-\infty
$$

so $f_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$ for all $x \in[0,1]$. Thus $f_{n}(x) \rightarrow 0$ uniformly if and only if $M_{n}=\sup _{x \in[0,1]}\left|f_{n}(x)\right|$ converges to zero. Since

$$
\frac{f_{n}^{\prime}(x)}{f(x)}=\frac{2}{x}+\frac{n}{1-x}
$$

f has a unique critical point at $x=2 /(n+2)$. Thus

$$
M_{n}=\frac{4 n}{(n+2)^{2}}\left(1+\frac{2}{n}\right)^{n}
$$

which tends to zero since the first right-hand factor tends to zero and the second right-hand factor converges to e^{-2}. Hence $f_{n} \rightarrow 0$ uniformly.
(b) Let $f_{n}(x)=n^{2} x\left(1-x^{2}\right)^{n}$. Again $f_{n}(0)=f_{n}(1)=0$ while for $0<x<$ 1 ,

$$
\log f_{n}(x)=n\left(\frac{2 \log n}{n}+\frac{\log x}{n}+\log \left(1-x^{2}\right)\right) \rightarrow-\infty
$$

so $f_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$ for all x. For this function

$$
\frac{f_{n}^{\prime}(x)}{f(x)}=\frac{1}{x}-\frac{2 n x}{1-x^{2}}
$$

so the unique critical point in $(0,1)$ occurs at $x_{n}=\sqrt{2 n+1}$. A computation shows that

$$
M_{n}-\frac{n^{2}}{2 n+1}\left(1+\frac{1}{2 n}\right)^{-n} .
$$

The first factor diverges while the second factor converges to $e^{-1 / 2}$. Hence f_{n} does not converge uniformly to 0 .
(c) Let $f_{n}(x)=n^{2} x^{3} e^{-n x^{2}}$. Then $f_{n}(0)=0$ and $f_{n}(1)=n^{2} e^{-n} \rightarrow 0$ as $n \rightarrow \infty$. For $0<x<1$ we have

$$
\log f_{n}(x)=n\left(\frac{2 \log n}{n}+\frac{3 \log x}{n}-x^{2}\right) \rightarrow-\infty
$$

so $f_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$ for all $x \in[0,1]$. Since

$$
\frac{f_{n}^{\prime}(x)}{f_{n}(x)}=\frac{3}{x}-2 n x
$$

f has a unique critical point at $x_{n}=(3 /(2 n))^{1 / 2}$. Thus

$$
f_{n}\left(x_{n}\right)=n^{2}\left(\sqrt{\frac{3}{2 n}}\right)^{3} e^{-3 / 2}
$$

which diverges as $n \rightarrow \infty$. Hence f_{n} does not converge to zero uniformly.
(d) Let $f_{n}(x)=\frac{x^{2}}{x^{2}+(1-n x)^{2}}$. Then $f_{n}(0)=0$ and $f_{n}(1)=\frac{1}{1+(n-1)^{2}} \rightarrow$ 0 as $n \rightarrow \infty$. For $0<x<1$ we have

$$
f_{n}(x) \leq \frac{x^{2}}{\left(1+n^{2}\right)\left(x^{2}-\frac{2 n x}{1+n^{2}}\right)} \rightarrow 0 \text { as } n \rightarrow \infty
$$

so that $f_{n}(x) \rightarrow 0$ for all $x \in[0,1]$. To find the interior critical point we use the quotient rule to compute

$$
f_{n}^{\prime}(x)=(-2) \frac{(n x-1) x}{\left(x^{2}-2 n x+n^{2} x^{2}+1\right.}
$$

so that $x_{n}=1 / n$. We compute $f_{n}\left(x_{n}\right)=1$ which shows that $f_{n}(x)$ does not converge to 0 uniformly.
(4) (p. 94, 2)
(a) Suppose that $\left\{f_{n}\right\}$ is a sequence of functions from A which converges in $C(I)$ to a limit function f. Since $\left|f_{n}(x)\right| \leq 1$ and $f_{n}(x) \rightarrow f(x)$ as $n \rightarrow \infty$ for each x, it follows that $|f(x)| \leq 1$ for all $x \in I$, so that $f \in A$. Hence A is closed.
Second, for any $f \in A .|f(x)| \leq 1$ for all $x \in I$, so that $|f| \leq 1$. Hence, A is a bounded set.
(b) Let $f_{n}(x)=x^{n}$ and consider the function

$$
g_{n, m}(x)=\left|f_{n+m}(x)-f_{n}(x)\right|=x^{n}\left(1-x^{m}\right) .
$$

Note that $g_{n, m}(x) \geq 0$ and $g_{n, m}(0)=g_{n, m}(1)=0$, so the maximum occurs at an interior critical point. To find it we compute

$$
\frac{g_{n, m}^{\prime}(x)}{g_{n, m}(x)}=\frac{n}{x}-\frac{m x^{m-1}}{1-x^{m}}
$$

so that the critical point is $x_{n, m}=(n /(n+m))^{1 / m}$. Thus

$$
g_{n, m}\left(x_{n, m}\right)=\left(\frac{n}{n+m}\right)^{n / m}\left(\frac{m}{n+m}\right) .
$$

As $m \rightarrow \infty$, the second factor goes to 1 while the first factor also goes to 1 as $m \rightarrow \infty$ for fixed n since

$$
\left(\frac{n}{n+m}\right)^{n / m}=e^{(n / m) \log (1-m /(n+m))}
$$

This shows that $\left\|f_{n+m}-f_{n}\right\| \rightarrow 1$ as $m \rightarrow \infty$.
(5) (p. 94, 6)
(a) The set A of complex numbers of the form $p+i q$ with $p, q \in \mathbb{Q}$ is in one-to-one correspondence with $\mathbb{Q} \times \mathbb{Q}$ which, as a finite cartesian product of countable sets, is countable. Given $z=x+i y$ there are sequences $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ from \mathbb{Q} so that $p_{n} \rightarrow x, q_{n} \rightarrow y$ as $n \rightarrow \infty$. Thus given any z and $\varepsilon>0$, we can find $p+i q \in A$ with $|z-(p+i q)|<\varepsilon$. This shows that A is dense in \mathbb{C}.
(b) Fix an interval $I=[a, b]$. We will show that polynomials with rational coefficients form a countable dense subset of $C(I)$.
First, observe that he set \mathcal{Q}_{n} of polynomials of degree n with rational coefficients is countable because it lies in one-to-one correspondence with \mathbb{Q}^{n+1}. Since the set of rational polynomials \mathcal{Q} is given by $\mathcal{Q}=$ $\cup_{n=0}^{\infty} \mathcal{Q}_{n}$, it follows that \mathcal{Q} is countable.
Next, note that, given $\varepsilon>0$ and a polynomial P_{n} is a polynomial with real coefficients, there is a $Q_{n} \in \mathcal{Q}_{n}$ with $\left\|P_{n}-Q_{n}\right\|<\varepsilon / 2$. This follows from the fact that, for any polynomials $P=\sum_{j=0}^{n} \alpha_{j} x^{j}$ and $Q=\sum_{j=0}^{n} \beta_{j} x^{j}$,

$$
\left\|P_{n}-Q_{n}\right\| \leq \sum_{j=1}^{n}\left|\beta_{j}-\alpha_{j}\right| \max (|a|,|b|)^{j} .
$$

Finally, given any $\varepsilon>0$ and any $f \in C(I)$, we can find a polynomial P_{n} with $\|f-P\|<\varepsilon / 2$. by the Weierstrass polynomial approximation theorem.
Combining these observations, we see that, given any $\varepsilon>0$ and an $f \in C(I)$, there is a polynomial Q_{n} with rational coefficients such that $\left\|f-Q_{n}\right\|<\varepsilon$.

