Math 575

Problem Set \#11
 Solutions

1. (p. 104, 1b) To find

$$
\lim _{x \downarrow 0} \frac{\log (1+x)-x}{\sin \left(x^{2}\right)},
$$

let $f(x)=\log (1+x)-x$, and let $g(x)=\sin \left(x^{2}\right)$. By continuity, $\lim _{x \downarrow 0} f(x)=$ $\lim _{x \downarrow 0} g(x)=0$. Note that g is nonvanishing in $(0,1)$. Since

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{1+x}-1 \\
g^{\prime}(x) & =2 x \cos \left(x^{2}\right)
\end{aligned}
$$

we see that $g^{\prime}(x)$ is nonvanishing in $(0,1)$ and $\lim _{x \downarrow 0} f^{\prime}(x)=\lim _{x \downarrow 0} g^{\prime}(x)=$ 0 . Consider

$$
\begin{aligned}
f^{\prime \prime}(x) & =-\frac{1}{(1+x)^{2}} \\
g^{\prime \prime}(x) & =2 \cos \left(x^{2}\right)-4 x^{2} \sin \left(x^{2}\right)
\end{aligned}
$$

Note that $g^{\prime \prime}(x) \neq 0$ for $x>0$ sufficiently small. By continuity and the algebra of limits,

$$
\lim _{x \downarrow 0} \frac{f^{\prime \prime}(x)}{g^{\prime \prime}(x)}=\frac{1}{2}
$$

It follows from L'Hospital's rule that, also

$$
\lim _{x \downarrow 0} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\frac{1}{2},
$$

and with one more application we get

$$
\lim _{x \downarrow 0} \frac{f(x)}{g(x)}=\frac{1}{2} .
$$

2. (p. 104, 2) We apply the Mean Value Theorem. For any $x, y \in \mathbb{R}$ there is a point $c \in(x, y)$ so that

$$
\frac{f(x)-f(y)}{x-y}=f^{\prime}(c)
$$

so

$$
|f(x)-f(y)| \leq\left|f^{\prime}(c)\right||x-y|
$$

Since f^{\prime} is bounded in \mathbb{R}, there is a positive number M so that $\left|f^{\prime}(c)\right| \leq M$ for all $c \in \mathbb{R}$. Hence

$$
|f(x)-f(y)| \leq M|x-y|
$$

Given any $\varepsilon>0$, choosing $\delta<\varepsilon / M$ gives $|f(x)-f(y)|<\varepsilon$ whenever $|x-y|<\delta$. This shows that f is uniformly continuous.
3. (p. 104, 3) (a) Let $\varepsilon>0$ be given, and choose $M \geq 1$ so that $|f(x)|<\varepsilon / 2$ for $|x| \geq M$. Since f is continuous on the compact interval $[-2 M, 2 M]$, it is uniformly continuous on $[-2 M, 2 M]$. There is a $\delta>0$ so that $|f(x)-f(y)|<\varepsilon / 2$ whenever $|x-y|<\delta$ and $x, y \in[-M, M]$. We claim that, for any x, y with $|x-y|<\delta$, the same holds true. Either both of x and y lie in $[-M, M]$, at least one of x, y lie in $[-M, M]$, or neither of x, y lie in $[-M, M]$. In the first case, the result is already proved, and in the third case $|f(x)-f(y)| \leq|f(x)|+|f(y)|<\varepsilon$. In the second case, if say $x \in[-M, M]$ but $y \notin[-M, M]$, we still have $y \in[-2 M, 2 M]$ so $|f(x)-f(y)|<\varepsilon$.
(b) Consider the function

$$
f(x)=\frac{\cos \left(x^{4}\right)}{1+x^{2}}
$$

Since $\left|\cos \left(x^{4}\right)\right| \leq 1$, it is easy to see that $\lim _{|x| \rightarrow \infty} f(x)=0$, so by part (a) f is uniformly continuous on the real line. On the other hand,

$$
f^{\prime}(x)=\frac{4 x^{3} \sin \left(x^{4}\right)-2 x \cos \left(x^{4}\right)}{1+x^{2}}
$$

Let $x_{n}=((4 n+1) \pi / 2)^{1 / 4}$ so that $\cos \left(x_{n}^{4}\right)=0$ while $\sin \left(x_{n}^{4}\right)=1$. Then

$$
f^{\prime}\left(x_{n}\right)=\frac{4((4 n+1) \pi / 2)^{3 / 4}}{1+((4 n+1) \pi / 2)^{1 / 2}}
$$

and $\lim _{n \rightarrow \infty} f^{\prime}\left(x_{n}\right)=+\infty$, so f^{\prime} is unbounded. Remark: The key idea here is that f be the quotient of a highly oscillating but bounded function and a function that goes to infinity at infinity.
4. (p. 104, 5) We suppose that $f^{\prime}(x) \neq 0$ on (a, b) and we wish to prove that f is monotone on (a, b). For any closed interval $[c, d]$ contained in $(a, b), f$ is continuous on $[c, d]$ and differentiable on (c, d). We claim that f is monotone on $[c, d]$. If not, f has an interior minimum or an interior maximum at α, and it follows that $f^{\prime}(\alpha)=0$, contradicting the hypothesis. Hence, f is monotone on every subinterval $[c, d]$ of (a, b), and hence monotone on (a, b).
5. (p. 104, 6) Consider the function $g(x)=f(x)-c x$. We have $g^{\prime}(x)=$ $f^{\prime}(x)-c$ so that $g^{\prime}(a)<0$ and $g^{\prime}(b)>0$. If $g^{\prime}(x) \neq 0$ in (a, b), it follows from the previous problem that g is either strictly increasing or strictly decreasing on (a, b). This contradicts the fact that $g^{\prime}(a)$ and $g^{\prime}(b)$ have opposite signs. Thus, there is a point $\alpha \in(a, b)$ so that $g^{\prime}(\alpha)=0$, that is, $f^{\prime}(\alpha)=c$.

