Math 575
Problem Set #11
Solutions
1. (p. 104, 1b) To find
. log(l4+2z)—=
lim —=——————
zl0  sin(z?)
let f(z) = log(1+x)—x, and let g(z) = sin(z?). By continuity, lim, ¢ f(z) =
lim, o g(z) = 0. Note that ¢ is nonvanishing in (0, 1). Since

1
@) =

¢ (z) = 2z cos (z*)

we see that ¢’ (x) is nonvanishing in (0, 1) and lim, o f/(x) = lim, o ¢'(x) =
0. Consider
1
@) =-—03,
(1+2)°

9" (z) = 2cos (z*) — 42” sin(z?).
Note that ¢g"”(x) # 0 for x > 0 sufficiently small. By continuity and the
algebra of limits,
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It follows from L’Hospital’s rule that, also

fz) 1

20 g'(z) 2’

and with one more application we get

flz) 1

1m .

2. (p. 104, 2) We apply the Mean Value Theorem. For any z,y € R there is
a point ¢ € (z,y) so that

o
If(@) = fl < 1f' (O] |z =yl .-

Since f’ is bounded in R, there is a positive number M so that |f/(c)| < M

for all ¢ € R. Hence

[f (@) = fy)l < M|z —y|.

Given any € > 0, choosing 6 < /M gives |f(x) — f(y)| < € whenever
|x — y| < 0. This shows that f is uniformly continuous.



3. (p. 104, 3) (a) Let € > 0 be given, and choose M > 1 so that |f(z)| < &/2
for |z| > M. Since f is continuous on the compact interval [—2M,2M],
it is uniformly continuous on [-2M,2M]. There is a ¢ > 0 so that
|f(z) — f(y)| < e/2 whenever |z —y| < 0 and z,y € [-M, M]. We claim
that, for any =,y with |z — y| < J, the same holds true. Either both of
x and y lie in [—-M, M], at least one of z,y lie in [—-M, M|, or neither of
x,y lie in [-M, M]. In the first case, the result is already proved, and
in the third case |f(z) — f(y)] < |f(z)| + |f(y)| < e. In the second case,
if say x € [-M,M] but y ¢ [—M, M], we still have y € [—2M,2M] so
() — F)l <<
(b) Consider the function

COS (1‘4)

1422

fz) =

Since |cos (x4)’ < 1, it is easy to see that lim|,_,o f(z) = 0, so by part
(a) f is uniformly continuous on the real line. On the other hand,

() = 423 sin(a*) — 2 cos (x*)
1+ 22 '

Let z, = ((4n+1) 7r/2)1/4 so that cos (z) = 0 while sin (21) = 1. Then

o) — A((4n+1)7/2)%*
f(n) = 14 ((4n+1)7/2)"/?

and lim, . f'(z,) = 400, so f’ is unbounded. Remark: The key idea
here is that f be the quotient of a highly oscillating but bounded function
and a function that goes to infinity at infinity.

4. (p. 104, 5) We suppose that f'(z) # 0 on (a,b) and we wish to prove
that f is monotone on (a,b). For any closed interval [c,d] contained in
(a,b), f is continuous on [c,d] and differentiable on (¢, d). We claim that
f is monotone on [c,d]. If not, f has an interior minimum or an interior
maximum at «, and it follows that f’'(«) = 0, contradicting the hypoth-
esis. Hence, f is monotone on every subinterval [c,d] of (a,b), and hence
monotone on (a,b).

5. (p. 104, 6) Consider the function g(z) = f(z) — cx. We have ¢'(z) =
f'(z) — ¢ so that ¢'(a) < 0 and ¢'(b) > 0. If ¢'(z) # 0 in (a,b), it follows
from the previous problem that ¢ is either strictly increasing or strictly
decreasing on (a,b). This contradicts the fact that ¢’(a) and ¢'(b) have
opposite signs. Thus, there is a point a € (a,b) so that ¢'(«) = 0, that is,
fl(a)=c.



