Math 575 Problem Set #11 Solutions

1. (p. 104, 1b) To find

$$\lim_{x \downarrow 0} \frac{\log(1+x) - x}{\sin(x^2)},$$

let $f(x) = \log(1+x) - x$, and let $g(x) = \sin(x^2)$. By continuity, $\lim_{x\downarrow 0} f(x) = \lim_{x\downarrow 0} g(x) = 0$. Note that g is nonvanishing in (0, 1). Since

$$f'(x) = \frac{1}{1+x} - 1$$
$$g'(x) = 2x\cos\left(x^2\right)$$

we see that g'(x) is nonvanishing in (0, 1) and $\lim_{x\downarrow 0} f'(x) = \lim_{x\downarrow 0} g'(x) = 0$. Consider

$$f''(x) = -\frac{1}{(1+x)^2},$$

$$g''(x) = 2\cos(x^2) - 4x^2\sin(x^2)$$

Note that $g''(x) \neq 0$ for x > 0 sufficiently small. By continuity and the algebra of limits,

$$\lim_{x\downarrow 0}\frac{f''(x)}{g''(x)} = \frac{1}{2}$$

It follows from L'Hospital's rule that, also

$$\lim_{x \downarrow 0} \frac{f'(x)}{g'(x)} = \frac{1}{2},$$

and with one more application we get

$$\lim_{x \downarrow 0} \frac{f(x)}{g(x)} = \frac{1}{2}.$$

2. (p. 104, 2) We apply the Mean Value Theorem. For any $x, y \in \mathbb{R}$ there is a point $c \in (x, y)$ so that

$$\frac{f(x) - f(y)}{x - y} = f'(c)$$

 \mathbf{SO}

$$|f(x) - f(y)| \le |f'(c)| |x - y|$$

Since f' is bounded in \mathbb{R} , there is a positive number M so that $|f'(c)| \leq M$ for all $c \in \mathbb{R}$. Hence

$$|f(x) - f(y)| \le M |x - y|.$$

Given any $\varepsilon > 0$, choosing $\delta < \varepsilon/M$ gives $|f(x) - f(y)| < \varepsilon$ whenever $|x - y| < \delta$. This shows that f is uniformly continuous.

- 3. (p. 104, 3) (a) Let $\varepsilon > 0$ be given, and choose $M \ge 1$ so that $|f(x)| < \varepsilon/2$ for $|x| \ge M$. Since f is continuous on the compact interval [-2M, 2M], it is uniformly continuous on [-2M, 2M]. There is a $\delta > 0$ so that $|f(x) f(y)| < \varepsilon/2$ whenever $|x y| < \delta$ and $x, y \in [-M, M]$. We claim that, for any x, y with $|x y| < \delta$, the same holds true. Either both of x and y lie in [-M, M], at least one of x, y lie in [-M, M], or neither of x, y lie in [-M, M]. In the first case, the result is already proved, and in the third case $|f(x) f(y)| \le |f(x)| + |f(y)| < \varepsilon$. In the second case, if say $x \in [-M, M]$ but $y \notin [-M, M]$, we still have $y \in [-2M, 2M]$ so $|f(x) f(y)| < \varepsilon$.
 - (b) Consider the function

$$f(x) = \frac{\cos\left(x^4\right)}{1+x^2}.$$

Since $|\cos(x^4)| \leq 1$, it is easy to see that $\lim_{|x|\to\infty} f(x) = 0$, so by part (a) f is uniformly continuous on the real line. On the other hand,

$$f'(x) = \frac{4x^3 \sin(x^4) - 2x \cos\left(x^4\right)}{1 + x^2}$$

Let $x_n = ((4n+1)\pi/2)^{1/4}$ so that $\cos(x_n^4) = 0$ while $\sin(x_n^4) = 1$. Then

$$f'(x_n) = \frac{4\left((4n+1)\pi/2\right)^{3/4}}{1 + \left((4n+1)\pi/2\right)^{1/2}}$$

and $\lim_{n\to\infty} f'(x_n) = +\infty$, so f' is unbounded. *Remark*: The key idea here is that f be the quotient of a highly oscillating but bounded function and a function that goes to infinity at infinity.

- 4. (p. 104, 5) We suppose that $f'(x) \neq 0$ on (a, b) and we wish to prove that f is monotone on (a, b). For any closed interval [c, d] contained in (a, b), f is continuous on [c, d] and differentiable on (c, d). We claim that f is monotone on [c, d]. If not, f has an interior minimum or an interior maximum at α , and it follows that $f'(\alpha) = 0$, contradicting the hypothesis. Hence, f is monotone on every subinterval [c, d] of (a, b), and hence monotone on (a, b).
- 5. (p. 104, 6) Consider the function g(x) = f(x) cx. We have g'(x) = f'(x) c so that g'(a) < 0 and g'(b) > 0. If $g'(x) \neq 0$ in (a, b), it follows from the previous problem that g is either strictly increasing or strictly decreasing on (a, b). This contradicts the fact that g'(a) and g'(b) have opposite signs. Thus, there is a point $\alpha \in (a, b)$ so that $g'(\alpha) = 0$, that is, $f'(\alpha) = c$.