Math 575

Problem Set \#12 Solutions

1. (p. 107, 1) Consider the function

$$
f(x)=\left\{\begin{array}{cc}
\frac{x-\sin (x)}{1-\cos (x)}, & x \neq 0 \\
0, & x=0
\end{array}\right.
$$

on the interval $(-\pi, \pi)$. First, we claim that f is continuous. As $1-$ $\cos (x) \neq 0$ and $\sin (x) \neq 0$ for $x \in(-\pi, \pi)$ and $x \neq 0$, we may apply L'Hospital's rule to compute

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{x-\sin (x)}{1-\cos (x)} & =\lim _{x \rightarrow 0} \frac{1-\cos (x)}{\sin (x)} \\
& =\lim _{x \rightarrow 0} \frac{\sin (x)}{\cos (x)} \\
& =0
\end{aligned}
$$

which shows that f is continuous at $x=0$. For $x \neq 0$, we have

$$
f^{\prime}(x)=1-\frac{(x-\sin (x)) \sin (x)}{(1-\cos (x))^{2}} .
$$

We claim that $f^{\prime}(x) \geq 0$ for $x \in(-2 \pi, 2 \pi)$. It suffices to show that $x \sin (x)-\sin ^{2}(x)<1-2 \cos (x)+\cos ^{2}(x)$ or equivalently that

$$
x \sin x<2(1-\cos x) .
$$

Consider the function $g(x)=2(1-\cos x)-x \sin x$. We wish to show that $g(x) \geq 0$ on $(-2 \pi, 2 \pi)$. We have $g(-2 \pi)=g(0)=g(2 \pi)=0$. Moreover $g^{\prime}(x)=\sin x-x \cos x$, an odd function, has zeros when $\sin x=x \cos x$. Observe that $x=0$ is a root, and there are unique roots in $(\pi / 2, \pi)$ and $(-\pi,-\pi / 2)$. Since $g^{\prime \prime}(x)=-x \sin x$ is even and nonpositive, the roots of $g^{\prime}(x)$ correspond to maxima of g, and are positive since g is zero at the endpoints of the intervals. It follows that $f^{\prime}(x)$ is nonnegative and f is increasing on $(-2 \pi, 2 \pi)$. Finally, f is an odd function and $\lim _{x \rightarrow 2 \pi} f(x)=$ $+\infty$ since the numerator tends to 2π and the denominator tends to zero through positive values. By symmetry $\lim _{x \rightarrow-2 \pi} f(x)=-\infty$, and f maps $(-2 \pi, 2 \pi)$ onto \mathbb{R}.
2. (p. 112, 1(a)) Since f is continuous on $[a, b]$, we have $m \leq f(x) \leq M$ for all $x \in[a, b]$ and some numbers m and M. Hence

$$
m(b-a) \leq \int_{a}^{b} f(t) d t \leq M(b-a)
$$

or

$$
m \leq \frac{\int_{a}^{b} f(t) d t}{b-a} \leq M
$$

By the Intermediate Value Theorem, there is a point c in (a, b) so that

$$
f(c)=\frac{\int_{a}^{b} f(t) d t}{b-a}
$$

Inotherwords

$$
\int_{a}^{b} f(t) d t=f(c)(b-a) .
$$

