Math 575

Problem Set \#13 Solutions

1. (112, prob. 3) Suppose that f is nonnegative on $[a, b]$ and $\int_{a}^{b} f=0$. Suppose there is an x_{0} with $f\left(x_{0}\right)=c>0$. Taking $\varepsilon=c / 2$ there is a $\delta>0$ so that $|f(y)-f(x)|<\varepsilon$ for $|x-y|<\delta$, so that $f(y) \geq c / 2$ in $(x-\delta, x+\delta) \cap[a, b]$. Let P be a partition one of whose intervals is $[x-\delta, x+\delta] \cap[a, b]$. Then $L(P, f) \geq c \delta>0$, contradicting the fact that $L(P, f) \leq \int_{a}^{b} f$. Hence, $f(x)=0$ on $[a, b]$.
2. (112, prob. 4) Suppose that $g(1 / n)=1$ for $n \in \mathbb{N}$ and $g(x)=0$ otherwise. We claim that $\int_{0}^{1} g(x) d x$ exists. Observing that $L(P, f)=0$ for any partition P, it suffices to show that, given $\varepsilon>0$, there is a partition P with $U(P, f)<\varepsilon$. The idea is to isolate the discrete set $\{1 / n\}_{n=1}^{\infty}$ in intervals of total size ε, and use the fact that $g(x)$ is identically zero on the complementary intervals. We'll suppose without loss of generality that $0<\varepsilon<1 / 2$. Each point $y_{n}=1 / n$ is contained in an interval $I_{n}=\left[y_{n}-\varepsilon 2^{-n-1}, y_{n}+\varepsilon^{2^{-n-1}}\right]$ which has total length $\varepsilon 2^{-n}$ (in the case $n=1$, we take the interval to be $[1-\varepsilon / 2,1]$. For the intervals to be nonoverlapping, we need

$$
\frac{1}{n+1}+\varepsilon 2^{-n-2}<\frac{1}{n}-\varepsilon 2^{-n-1}
$$

for all n, or

$$
\varepsilon<\frac{2}{3} \frac{1}{n(n+1)} 2^{n+1}
$$

It is easy to see that the right-hand side is bounded below by $2 / 3$ so that the condition $0<\varepsilon<1 / 2$ suffices. Now choose M so large that $1 / M<\varepsilon / 2$ and choose P as follows: P consists of the interval $[0,1 / M]$, the intervals $\left\{I_{n}\right\}_{n=1}^{M-1}$, and all of the complementary intervals where g is zero. Then

$$
\begin{aligned}
U(P, g) & =\frac{1}{M}+\sum_{n=1}^{M-1} 1 \cdot \varepsilon 2^{-n-1} \\
& <\varepsilon / 2+\varepsilon / 2 \\
& <\varepsilon
\end{aligned}
$$

as claimed.
3. (116, prob. 2) Let $f(x)=\exp (-1 / x)$. For $x>0$ we have

$$
\begin{aligned}
f^{\prime}(x) & =-x^{-2} e^{-1 / x} \\
f^{\prime \prime}(x) & =\left(2 x^{-3}+x^{-4}\right) e^{-1 / x}
\end{aligned}
$$

and we claim that

$$
f^{(n)}(x)=Q_{2 n}(1 / x) e^{-1 / x}
$$

where $Q_{2 n}$ is a polynomial of degree $2 n$. The formulas above show that this holds for $n=1$. Supposing that $f^{(n)}$ takes this form we have

$$
f^{(n+1)}(x)=\left(Q_{2 n}^{\prime}(1 / x)+Q_{2 n}(1 / x)\right)\left(-1 / x^{2}\right) e^{-1 / x}
$$

so setting

$$
Q_{2 n+2}(z)=-z^{2}\left[Q_{2 n}^{\prime}(z)+Q_{2 n}(z)\right]
$$

we see that $f^{(n+1)}(x)=Q_{2 n+2}(1 / x) e^{-1 / x}$ and $\operatorname{deg} Q_{2 n+2}=\operatorname{deg} Q_{2 n}+2$. On the other hand, for $x<0, f^{(n)}(x)=0$ for all n. To compute the derivatives of f at zero and prove their continuity, we note that if P_{n} is any polynomial of degree n,

$$
\lim _{x \downarrow 0} P_{n}(1 / x) e^{-1 / x}=\lim _{x \rightarrow \infty} P_{n}(z) e^{-z}=0
$$

by applying L'Hospital's rule to $\lim _{x \rightarrow \infty}\left(P_{n}(z) / e^{z}\right)$. We claim that $f^{(n)}(0)=$ 0 and we will establish this inductively. It clearly holds for $n=0$ and for $n \geq 1$ we consider separately the left- and right-hand limits of the difference quotient $\left(f^{(n)}(h)-f^{(n)}(0)\right) / h=f^{(n)}(h) / h$. The left-hand limit is trivial and the right-hand limit is

$$
\begin{aligned}
\lim _{h \downarrow 0} \frac{f^{(n)}(h)}{h} & =\lim _{h \downarrow 0} \frac{1}{h} Q_{2 n}(1 / h) e^{-1 / h} \\
& =\lim _{h \downarrow 0} P_{2 n+1}(1 / h) e^{-1 / h} \\
& =0 .
\end{aligned}
$$

It follows that the nth Taylor polynomial for $f(x)$ is the zero polynomial for all n.
4. (117, prob. 8) Consider the sequence of functions

$$
f_{n}(x)=\left\{\begin{array}{cc}
n & x \in[0,1 / n] \\
n^{2}(2 / n-x) & x \in[1 / n, 2 / n] \\
0 & x \in[2 / n, 1]
\end{array}\right.
$$

Clearly, each f_{n} is continuous and $\int_{0}^{1} f_{n}(x) d x=3 / 2$. On the other hand, $\lim _{n \rightarrow \infty} f_{n}(x)=0$ for each $x \in(0,1]$.
5. (117, prob. 11) Suppose $f \in C[a, b]$ and $\int_{a}^{b} x^{n} f(x) d x=0$ for all nonnegative integers n. We will suppose that $\|f\|>0$ since otherwise there is nothing to prove. By the linearity of the integral, $\int P(x) f(x) d x=0$ for any polynomial P. On the other hand, by the Weierstrass approximation theorem, for any $\varepsilon>0$ there is a polynomial P so that

$$
\|f-P\|<\frac{\varepsilon}{(b-a)\|f\|}
$$

Since

$$
\begin{aligned}
\int_{a}^{b} f(x)^{2} d x & =\int_{a}^{b} f(x) P(x) d x+\int_{a}^{b} f(x)(P(x)-f(x)) d x \\
& =\int_{a}^{b} f(x)(P(x)-f(x)) d x
\end{aligned}
$$

we may estimate

$$
\begin{aligned}
\int_{a}^{b} f(x)^{2} d x & \leq \int_{a}^{b}|f(x)||P(x)-f(x)| d x \\
& \leq(b-a)\|f\|\|P-f\| \\
& <\varepsilon
\end{aligned}
$$

Since $\varepsilon>0$ was arbitrary, we conclude that $\int_{a}^{b} f(x)^{2} d x=0$. From a previous exercise, it now follows that $f(x)^{2}=0$ on $[a, b]$, and hence f is the zero function.

