Math 575
Fall 2018

Solutions to Problem Set \# 2

(1) (pp. 32-33, 1) (2 points) Suppose that $x_{n} \rightarrow x$ and $a \leq x_{n} \leq b$ for all n. By the definition of limit, for any $\varepsilon>0$, there is a positive integer N so that $x_{n}>x-\varepsilon$ and $x_{n}<x+\varepsilon$ for all $n \geq N$. Thus $b>x-\varepsilon$ and $a<x+\varepsilon$, hence $a-\varepsilon<x<b+\varepsilon$. Since this holds for any $\varepsilon>0$, we conclude that $a \leq x \leq b$.
(2) (pp. 32-33, 7) (4 points) Suppose that $\left\{z_{n}\right\}$ is a complex sequence with limit z_{0}. Taking $\varepsilon=1$ we see that $\left|z_{n}\right| \leq\left|z_{0}\right|+1$ for all sufficiently large n so that, in particular $\left\{z_{n}\right\}$ is bounded in modulus by some M. We may also assume that $\left|z_{0}\right| \leq M$.
(a) We estimate

$$
\left|z_{n}^{2}-z_{0}^{2}\right| \leq\left|z_{n}+z_{0}\right|\left|z_{n}-z_{0}\right| \leq 2 M\left|z_{n}-z_{0}\right|
$$

GIven $\varepsilon>0$, choose N so that $\left|z_{n}-z_{0}\right|<\varepsilon /(2 M)$. Then $\left|z_{n}^{2}-Z_{0}^{2}\right|<\varepsilon$ as required.
(b) From the identity

$$
z_{n}^{k}-z_{0}^{k}=\left(z_{n}-z_{0}\right)\left(z_{n}^{k-1}+z_{n}^{k-2} z_{0}+\ldots+z_{n} z_{0}^{k-2}+z_{0}^{k-1}\right)
$$

we have

$$
\left|z_{n}^{k}-z_{0}^{k}\right| \leq\left(k M^{k-1}\right)\left|z_{n}-z_{0}\right|
$$

Given $\varepsilon>0$, choose N so that $\left|z_{n}-z_{0}\right|<\varepsilon /\left(k M^{k-1}\right)$. Then $\left|z_{n}^{k}-z_{0}^{k}\right|<$ ε as required.
(3) (pp. 32-33, 10) (not graded) Let a_{1} be an element of A and let b_{1} be an upper bound. We will construct monotone sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ as follows. Given b_{n}, an upper bound, and a_{n}, a number which is not an upper bound for A, let

$$
c_{n}=\frac{1}{2}\left(a_{n}+b_{n}\right)
$$

and choose

$$
\left[a_{n+1}, b_{n+1}\right]= \begin{cases}{\left[a_{n}, c_{n}\right]} & \text { if } c_{n} \text { is an upper bound of } A \\ {\left[c_{n}, b_{n}\right]} & \text { if } c_{n} \text { is not an upper bound of } A\end{cases}
$$

Let $I_{n}=\left[a_{n}, b_{n}\right]$. Since each interval is obtained from the last by bisection, we have $\left|b_{n}-a_{n}\right| \leq 2^{1-n}\left|b_{1}-a_{1}\right|$. Moreover, by construction, $\left\{a_{n}\right\}$ is monotone nondecreasing and so has a limit, a. On the other hand, $\left\{b_{n}\right\}$ is monotone nonincreasing and so has a limit, b. Moreover, since

$$
a_{n} \leq a \leq b \leq b_{n}
$$

we have

$$
b-a \leq b_{n}-a_{n}=2^{1-n}\left(b_{1}-a_{1}\right)
$$

from which we conclude that $a=b$.
Denote by c the common value of a and b. We claim that c is the least upper bound of A. Since $c=\lim b_{n}$, then for any $\varepsilon>0$ the point $c-\varepsilon$ lies to the left of $\left[a_{n}, b_{n}\right]$ for some n. Since a_{n} is not an upper bound for A, then $c-\varepsilon$ is not an upper bound for A. On the other hand, we claim that
$x \leq c$ for all $x \in A$. If not, there is an ε so that $c+\varepsilon \in A$. Since $b_{n} \rightarrow c$ there is an n so that $b_{n}<c+\varepsilon$. But then b_{n} is not an upper bound of A, contradicting the construction. Therefore c is an upper bound for A, and since $c \leq c^{\prime}$ for all other upper bounds of A, c is the least upper bound of A.
(4) (pp. 32-33, 16) (4 points) First, consider the function

$$
f(x)=\frac{1}{2}\left(x+\frac{a}{x}\right) .
$$

Since

$$
\left(x-\frac{a}{x}\right)^{2} \geq 0
$$

it follows that

$$
\left(x+\frac{a}{x}\right)^{2} \geq 4 a
$$

so that, on dividing by 4 and taking square roots

$$
f(x) \geq \sqrt{a}
$$

If $x_{1}<\sqrt{a}$, then $x_{2}=f\left(x_{1}\right) \geq \sqrt{a}$. We may assume that $x_{n} \geq \sqrt{a}$ for all $n \geq 2$. We will show that $\left\{x_{n}\right\}_{n=2}^{\infty}$ is a monotone sequence. From that has already been proved, it is clear that $\left\{x_{n}\right\}$ is a bounded sequence with $x_{n} \geq \sqrt{a}$ for all $n \geq 2$.

We can compute

$$
\begin{aligned}
x_{n+1}-\sqrt{a} & =\frac{1}{2}\left(x_{n}+\frac{a}{x_{n}}\right)-\sqrt{a} \\
& =\frac{1}{2}\left(x_{n}-\sqrt{a}\right)+\frac{1}{2}\left(\frac{a}{x_{n}}-\sqrt{a}\right) \\
& =\frac{1}{2}\left(x_{n}-\sqrt{a}\right)+\frac{\sqrt{a}}{2}\left(\frac{\sqrt{a}-x_{n}}{x_{n}}\right) \\
& =\left(\frac{1}{2}-\frac{\sqrt{a}}{2 x_{n}}\right)\left(x_{n}-\sqrt{a}\right) .
\end{aligned}
$$

The inequality $x_{n}>\sqrt{a}$ implies that $\frac{\sqrt{a}}{2 x_{n}}<1 / 2$, so we conclude that

$$
x_{n+1}-\sqrt{a} \leq \frac{1}{2}\left(x_{n}-\sqrt{a}\right) .
$$

By induction,

$$
x_{n+1}-\sqrt{a} \leq \frac{1}{2^{n-1}}\left(x_{n}-\sqrt{a}\right), \quad n \geq 2
$$

which shows that

$$
\lim _{n \rightarrow \infty}\left(x_{n}-\sqrt{a}\right)=0
$$

or

$$
\lim _{n \rightarrow \infty} x_{n}=\sqrt{a}
$$

