Math 575
Fall 2018

Solutions to Problem Set \# 4

(1) (p. 48, 1) (Not graded) Suppose that $\left\{a_{n}\right\}$ converges to zero, and that $s_{2 n}=\sum_{k=1}^{2 n} a_{k}$ converges to a limit s. We claim that s_{n} also converges to s. Let $\varepsilon>0$ be given. We can find $N \in \mathbb{N}$ so that $\left|a_{n}\right|<\varepsilon / 2$ for all $n \geq N$, and $\left|s_{2 n}-s\right|<\varepsilon$ for all $n>N / 2$ (i.e., for all even $n>N_{1}$). If $n \geq N$ is odd we may write $n=2 m+1$ with $m>N / 2$ and estimate

$$
\left|s_{2 m+1}-s\right| \leq\left|s_{2 m+1}-s_{2 m}\right|+\left|s_{2 m}-s\right|<\varepsilon
$$

This shows that $\left|s_{n}-s\right|<\varepsilon$ for all $n \geq N$, so $s_{n} \rightarrow s$.
(2) (pp. 53-54, 19) (4 points)
(a) (2 points) Apply the integral test to $f(x)=1 /\left(x(\log x)^{a}\right)$. We compute, using the substitution $u=\log x, d u=d x / x$

$$
\begin{aligned}
\int_{2}^{R} \frac{1}{x(\log x)^{a}} d x & =\int_{\log 2}^{\log R} u^{-a} d u \\
& =\frac{1}{1-a}\left[(\log R)^{1-a}-(\log 2)^{1-a}\right]
\end{aligned}
$$

which is bounded as $R \rightarrow \infty$ provided $a>1$. Alternatively, one may use the 2^{m} test and exploit the fact that $\sum_{m=1}^{\infty} m^{-a}$ converges if and only if $a>1$.
(b) (2 points) Apply the integral test and compute carefully:

$$
\begin{aligned}
\int_{3}^{R} \frac{1}{x(\log x)(\log \log x)^{a}} d x & =\int_{\log 3}^{\log R} \frac{1}{u(\log u)^{a}} d u \\
& =\int_{\log \log 3}^{\log \log R} \frac{1}{v^{a}} d v \\
& =\frac{1}{1-a}\left[(\log \log R)^{1-a}-(\log \log 3)^{1-a}\right)
\end{aligned}
$$

The integral (and hence the sum) only converge if $a>1$. (Why was the lower limit set to 3 rather than 2 in this problem?)

One can also use the 2^{m} test iteratively to get to the same conclusion.
(3) (pp. 53-54, 24) (6 points) Suppose that $\left\{a_{m}\right\}$ is nonincreasing and has limit zero. We will prove that (a) if $\sum_{m=1}^{\infty} 2^{m} a_{2^{m}}$ converges, then $\sum_{k=1}^{\infty} a_{k}$ converges, and (b) if $\sum_{m=1}^{\infty} 2^{m} a_{2^{m}}$ diverges, then $\sum_{k=1}^{\infty} a_{k}$ diverges.
(a) (3 points) Suppose $\sum_{m=1}^{\infty} 2^{m} a_{2^{m}}$ converges to a nonnegative real number S, and denote by s_{n} the nth partial sum $\sum_{k=1}^{n} a_{k}$. Observe that the sequence of partial sums is monontone nondecreasing, so it suffices to show that $\left\{s_{n}\right\}$ is bounded above. Indeed, by monotonicity, it suffices to
show that $\left\{s_{2^{n}}\right\}$ is bounded above. But

$$
\begin{aligned}
s_{2^{n}} & =\sum_{\ell=1}^{n}\left(\sum_{k=2^{\ell-1}}^{2^{\ell}} a_{k}\right) \\
& \leq \sum_{\ell=1}^{n} 2^{\ell-1} a_{2^{\ell-1}} \\
& \leq S
\end{aligned}
$$

(b) (3 points) Suppose $\sum_{m=1}^{\infty} 2^{m} a_{2^{m}}$ diverges. Since $\left\{s_{k}\right\}$ is a monotone increasing sequence, it suffices to show that $\left\{s_{2^{n}}\right\}$ diverges. But

$$
\begin{aligned}
s_{2^{n}} & =\sum_{\ell=1}^{n}\left(\sum_{k=2^{\ell-1}}^{2^{\ell}} a_{k}\right) \\
& \geq \sum_{\ell=1}^{n}\left(\sum_{k=2^{\ell-1}}^{2^{\ell}} a_{2^{\ell}}\right) \\
& =\frac{1}{2} \sum_{\ell=1}^{n} 2^{\ell} a_{2^{\ell}}
\end{aligned}
$$

so $s_{2^{n}} \rightarrow \infty$ as $n \rightarrow \infty$.

