Math 575
Fall 2018

Solutions to Problem Set \# 5

(1) (p. 63, 3) (3 points) To determine the radius of convergence of this series, we'll use the root test. If $a_{n}=a^{n^{2}} z^{n}$, then

$$
\left|a_{n}\right|^{1 / n}=a^{n}|z|
$$

and

$$
\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}= \begin{cases}0 & 0<a<1 \\ |z| & a=1 \\ \infty & a>1\end{cases}
$$

Thus, the radius of convergence is ∞ if $0<a<1,1$ if $a=1$, and 0 if $a>1$.
(2) (p. 63, 9) (4 points) First suppose that $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L$ is finite. Applying the ratio test to the series $\sum a_{n} z^{n}$ we see that the series converges absolutely provided

$$
\limsup _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right||z|=L|z|<1
$$

which is satisfied when $|z|<L^{-1}$. But

$$
L^{-1}=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|
$$

which proves the theorem in this case.
Second, suppose that $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=+\infty$. We wish to show that the radius of convergence is zero. Applying the ratio test we see that the series converges absolutely provided

$$
\limsup _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right||z|<1
$$

which can hold for no nonzero z.
(3) (p. 66, 1) (3 points) The series

$$
f(w)=\sum_{n=1}^{\infty} \frac{(w-1)^{n}}{n}
$$

converges absolutely for $|w-1|<1$ by the ratio test. By Theorem 5.4 we can differentiate term by term to find

$$
f^{\prime}(w)=\sum_{n=1}^{\infty}(w-1)^{n-1}=\sum_{n=0}^{\infty}(w-1)^{n}
$$

The right-hand sum is a geometric series with $r=w-1$ so

$$
\sum_{n=0}^{\infty}(w-1)^{n}=\frac{1}{1-(w-1)}=\frac{1}{w}
$$

for $0<w<2$.

