Math 575
Fall 2018
Solutions to Problem Set \# 6
(1) (p. 74,10) (8 points)
(a) (6 points)

To show that d_{1} is a metric on \mathbb{R}^{n} :
(i) For any $x \in \mathbb{R}^{n}$,

$$
d_{1}(x, x)=\sum_{j=1}^{n}\left|x_{i}-x_{i}\right|=0
$$

(ii) For any $x, y \in \mathbb{R}^{n}$,

$$
d_{1}(x, y)=\sum_{j=1}^{n}\left|x_{i}-y_{i}\right|=\sum_{j=1}^{n}\left|y_{i}-x_{i}\right|=d_{1}(y, x)
$$

(iii) For any points $x, y, z \in \mathbb{R}^{n}$,

$$
\begin{aligned}
d_{1}(x, z) & =\sum_{j=1}^{n}\left|x_{i}-z_{i}\right| \\
& \leq \sum_{j=1}^{n}\left(\left|x_{i}-y_{i}\right|+\left|y_{i}-z_{i}\right|\right) \\
& =\sum_{j=1}^{n}\left|x_{i}-y_{i}\right|+\sum_{j=1}^{n}\left|y_{i}-z_{i}\right| \\
& =d_{1}(x, y)+d_{1}(y, z) .
\end{aligned}
$$

To show that d_{∞} is a metric on \mathbb{R}^{n} :
(i) For any $x \in \mathbb{R}^{n}$,

$$
d_{\infty}(x, x)=\sup \left\{\left|x_{i}-x_{i}\right|, 1 \leq i \leq n\right\}=0
$$

(ii) For any $x, y \in \mathbb{R}^{n}$,

$$
\begin{aligned}
d_{\infty}(x, y) & =\sup \left\{\left|x_{i}-y_{i}\right|, 1 \leq i \leq n\right\} \\
& =\sup \left\{\left|y_{i}-x_{i}\right|: 1 \leq j \leq n\right\} \\
& =d_{\infty}(y, x)
\end{aligned}
$$

(iii) For any points $x, y, z \in \mathbb{R}^{n}$,

$$
\begin{aligned}
d_{\infty}(x, z)= & \sup \left\{\left|x_{i}-z_{i}\right|, 1 \leq i \leq n\right\} \\
\leq & \sup \left\{\left|x_{i}-y_{i}\right|+\left|y_{i}-z_{i}\right|, 1 \leq j \leq n\right\} \\
= & \sup \left\{\left|x_{i}-y_{i}\right|, 1 \leq i \leq n\right\} \\
& +\sup \left\{\left|y_{i}-z_{i}\right|, 1 \leq i \leq n\right\} \\
= & d_{\infty}(x, y)+d_{\infty}(y, z)
\end{aligned}
$$

Each of (i)-(iii) is worth 1 point
(b) (2 points) It is easy to see that, for any $1 \leq i \neq n,\left|x_{i}-y_{i}\right| \leq d_{1}(x, y)$, so that

$$
d_{\infty}(x, y) \leq d_{1}(x, y)
$$

On the other hand

$$
d_{1}(x, y) \leq \sqrt{n} \sup \left\{\left|x_{i}-y_{i}\right|, 1 \leq i \leq n\right\}=\sqrt{n} d_{\infty}(x, y)
$$

This shows that

$$
(\sqrt{n})^{-1} d_{\infty}(x, y) \leq d_{1}(x, y) \leq \sqrt{n} d_{\infty}(x, y)
$$

which shows that the two norms on \mathbb{R}^{n} are equivalent.
(2) (p. 74,3$)(2$ points) Suppose that V is a vector space with norm $\|\cdot\|$, i.e.,
(i) $\|x\| \geq 0$ for all $x \in V$,
(ii) $\|\lambda x\|=|\lambda|\|x\|$ for any scalar λ and $x \in V$, and
(iii) $\|x+y\| \leq\|x\|+\|y\|$ for all $x, y \in V$.

Then, letting $d(x, y)=\|x-y\|$,
(i) $d(x, x)=\|x-x\|=\|\mathbf{0}\|=0$,
(ii) $d(x, y)=\|x-y\|=\|(-1)(y-x)\|=\|y-x\|=d(y, x)$
(iii) $d(x, z)=\|x-z\| \leq\|x-y\|+\|y-z\|=d(x, y)+d(y, z)$

