$\begin{array}{c} {\rm Math~575}\\ {\rm Fall~2018}\\ {\rm Solutions~to~Problem~Set~\#~7} \end{array}$

- (1) (p. 78, 2) (3 points) First, suppose that p is a limit point of B. There is a $q_1 \in N_1(p)$ with $p \neq q$ and $q \in B$. Let $r_1 = d(p, q_1)/2$. There is a $q_2 \in N_{r_1}(p)$ with $q_2 \in B$ and $q_2 \neq p$. At the kth step, given $q_k \in B$ with $q_k \neq p$, let $r_k = d(p, q_k)/2$ and choose $q_{k+1} \in N_{r_k}(p)$, $q_{k+1} \neq p$. Continuing in this way we obtain a sequence of distinct points q_1, q_2, \ldots with the properties that $q_k \in B$, $q_k \neq p$, and q_k is distinct from the points q_j with $1 \leq j < k$, and a strictly decreasing sequence r_1, r_2, \ldots with the properties that $r_k \leq 2^{-k}r_1$ and $p_n \in N_{r_N}(p)$ for all $n \geq N$. Given $\varepsilon > 0$ choose N so that $r_N < \varepsilon$. Then $d(q_n, p) < \varepsilon$ for all $n \geq N$, so $q_n \to p$ as $n \to \infty$.
- (2) (p. 81, 1)
 - (a) (2 points) Suppose that A is a finite subset of a metric space S, and let \mathcal{U} be an open cover of A. Denoting by $\{p_k\}_{k=1}^N$ the points of A, the cover $\{U_k\}_{k=1}^N$, where $p_k \in U_k$, is a finite subcover of A. Hence A is compact.
 - (b) (2 points) Suppose that S has the discrete metric and that A is a compact subset of S. Let \mathcal{U} be a cover of A by neighborhoods of the form $N_{1/2}(p)$ for $p \in A$. The set $N_{1/2}(p)$ is an open neighborhood which contains only p. Since A is compact, the cover \mathcal{U} contains a finite subcover each of whose open sets contain exactly one element of A. Hence, S is finite.
 - (c) (1 point) Let S be a countable set with the discrete metric

$$d(p,q) = \begin{cases} 0 & p = q \\ 1 & p \neq q \end{cases}.$$

The set S is itself bounded since, for any $p, q \in S$, $d(p,q) \leq 1$. On the other hand, since S is countably infinite, S cannot be compact.

(3) (p. 81,2) (2 points) Suppose that A and B are compact sets of a metric space S, and let $C = A \cup B$. We claim that C is compact. Let \mathcal{U} be any open cover of C. Any cover of C is also a cover of A and hence has a finite subcover $\{U_j\}_{j=1}^N$ of A. Such a cover also covers B so that there is a finite subcover $\{V_j\}_{j=1}^M$ of B. Hence, $\{U_j\} \cup \{V_k\}$ is a finite subcover of $A \cup B$.