Math 575
Fall 2018

Solutions to Problem Set \# 7

(1) (p. 78, 2) (3 points) First, suppose that p is a limit point of B. There is a $q_{1} \in N_{1}(p)$ with $p \neq q$ and $q \in B$. Let $r_{1}=d\left(p, q_{1}\right) / 2$. There is a $q_{2} \in N_{r_{1}}(p)$ with $q_{2} \in B$ and $q_{2} \neq p$. At the k th step, given $q_{k} \in B$ with $q_{k} \neq p$, let $r_{k}=d\left(p, q_{k}\right) / 2$ and choose $q_{k+1} \in N_{r_{k}}(p), q_{k+1} \neq p$. Continuing in this way we obtain a sequence of distinct points q_{1}, q_{2}, \ldots with the properties that $q_{k} \in B, q_{k} \neq p$, and q_{k} is distinct from the points q_{j} with $1 \leq j<k$, and a strictly decreasing sequence r_{1}, r_{2}, \ldots with the properties that $r_{k} \leq 2^{-k} r_{1}$ and $p_{n} \in N_{r_{N}}(p)$ for all $n \geq N$. Given $\varepsilon>0$ choose N so that $r_{N}<\varepsilon$. Then $d\left(q_{n}, p\right)<\varepsilon$ for all $n \geq N$, so $q_{n} \rightarrow p$ as $n \rightarrow \infty$.
(2) (p. 81, 1)
(a) (2 points) Suppose that A is a finite subset of a metric space S, and let \mathcal{U} be an open cover of A. Denoting by $\left\{p_{k}\right\}_{k-1}^{N}$ the points of A, the cover $\left\{U_{k}\right\}_{k=1}^{N}$, where $p_{k} \in U_{k}$, is a finite subcover of A. Hence A is compact.
(b) (2 points) Suppose that S has the discrete metric and that A is a compact subset of S. Let \mathcal{U} be a cover of A by neighborhoods of the form $N_{1 / 2}(p)$ for $p \in A$. The set $N_{1 / 2}(p)$ is an open neighborhood which contains only p. Since A is compact, the cover \mathcal{U} contains a finite subcover each of whose open sets contain exactly one element of A. Hence, S is finite.
(c) (1 point) Let S be a countable set with the discrete metric

$$
d(p, q)= \begin{cases}0 & p=q \\ 1 & p \neq q\end{cases}
$$

The set S is itself bounded since, for any $p, q \in S, d(p, q) \leq 1$. On the other hand, since S is countably infinite, S cannot be compact.
(3) (p. 81,2) (2 points) Suppose that A and B are compact sets of a metric space S, and let $C=A \cup B$. We claim that C is compact. Let \mathcal{U} be any open cover of C. Any cover of C is also a cover of A and hence has a finite subcover $\left\{U_{j}\right\}_{j=1}^{N}$ of A. Such a cover also covers B so that there is a finite subcover $\left\{V_{j}\right\}_{j=1}^{M}$ of B. Hence, $\left\{U_{j}\right\} \cup\left\{V_{k}\right\}$ is a finite subcover of $A \cup B$.

