Math 575
Fall 2018
Solutions to Problem Set \# 8
(1) (p. 83, 7) Suppose that B is totally bounded and complete. We wish to show that B is compact. Suppose, to the contrary, that \mathcal{U} is a collection of open sets and that no finite subcollection of \mathcal{U} covers B. We will construct a Cauchy sequence $\left\{p_{n}\right\}$ which, by completeness, must have a limit p in B, but we will show that p is contained in no open set in \mathcal{U}.

In keeping with the proof of Theorem 6.8 , we'll call a subset C of B elusive if C has no finite cover by sets of \mathcal{U}. There is a finite cover of B by neighborhoods of radius 1 for at least one of these neighborhoods, say N_{1}, the set $B_{1}=N_{1} \cap B$ is elusive. Pick $p_{1} \in B_{1}$. The set B_{1}, as the subset of a totally bounded set, is also totally bounded. Thus, B_{1} admits a finite cover by neighborhoods of radius $1 / 2$. For at least one of these neighborhoods $N_{1 / 2}$, the set $B_{2}=B \cap N_{1 / 2}$ is elusive. Pick $p_{2} \in B_{2}$. We claim that, continuing in this way, we can find a sequence of sets $\left\{B_{n}\right\}$ and of points $p_{n} \in B_{n}$ so that:
(i) B_{n} is elusive and $B_{n} \subset B_{n-1} \subset \ldots \subset B_{1} \subset B$
(ii) $\operatorname{diam}\left(B_{n}\right) \leq 2^{1-n}$, and
(iii) $p_{n} \in B_{n}$

Suppose that we have chosen $B_{1}, \ldots B_{n-1}$ and $p_{1}, \ldots p_{n-1}$. The set B_{n-1}, as a subset of a totally bounded set, is totally bounded. There is a finite cover of B_{n-1} by neighborhoods of radius 2^{1-n}. For at least one of these neighborhoods $N_{2^{1-n}}, B_{n}=B \cap N_{2^{1-n}}$ is elusive. Now pick $p_{n} \in B_{n}$.

Having established that we can pick $\left\{B_{n}\right\}$ and $\left\{p_{n}\right\}$ to satisfy (i)-(iii), we first note that $\left\{p_{n}\right\}$ is Cauchy since, for all $n \geq N, p_{n}$ is contained in a ball of radius 2^{1-N} so that $d\left(p_{n}, p_{m}\right)<2^{1-N}$ for all $n, m \geq N$. By completeness, p_{n} converges to a limit $p \in B$. We claim that no open set $U \in \mathcal{U}$ contains p. If there is some such U, there is some B_{n} with $p \in B_{n} \subset U$, contradicting the elusiveness of B_{n}. The fact that there is no U in \mathcal{U} containing p contradicts the assumption that \mathcal{U} is a cover with no finite subcover. Hence, B is compact.
(2) (p. 83, 12) Suppose that S is a complete metric space is nonempty. Suppose that $f: S \rightarrow S$ is a strict contraction, i.e., $d(f(p), f(q)) \leq r d(p, q)$ for every $p, q \in S$ and some r with $0<r<1$. Pick any point $p_{1} \in S$ and define a sequence by $p_{n+1}=f\left(p_{n}\right)$. Then for an $\mathrm{y} n \geq 2$,

$$
d\left(p_{n+1}, p_{n}\right)=d\left(f\left(p_{n}\right), f\left(p_{n-1}\right)\right) \leq r d\left(p_{n}, p_{n-1}\right)
$$

It follows by iteration that $d\left(p_{n+1}, p_{n}\right) \leq r^{n-1} d\left(p_{2}, p_{1}\right)$. We claim that $\left\{p_{n}\right\}$ is Cauchy. Given $\varepsilon>0$, choose N so that $r^{N-2} d\left(p_{2}, p_{1}\right) /(1-r)<\varepsilon$. For
any $n, m \geq N$ we estimate

$$
\begin{aligned}
d\left(p_{n}, p_{m}\right) & \leq \sum_{k=m+1}^{n-m} r^{k-1} d\left(p_{2}, p_{1}\right) \\
& \leq \sum_{k=m+1}^{\infty} r^{k-1} d\left(p_{2}, p_{1}\right) \\
& \leq \frac{r^{m}}{1-r} d\left(p_{2}, p_{1}\right) \\
& <\varepsilon
\end{aligned}
$$

provided $n, m \geq N$. Since $\left\{p_{n}\right\}$ is Cauchy and S is complete, it follows that $\lim _{n \rightarrow \infty} p_{n}=p$ exists. Note that, by construction,

$$
\lim _{n \rightarrow \infty} f\left(p_{n}\right)=\lim _{n \rightarrow \infty} p_{n+1}=p .
$$

We claim that, also, $f(p)=p$. To see this note that

$$
d\left(f(p), p_{n}\right)=d\left(f(p), f\left(p_{n-1}\right)\right) \leq r d\left(p, p_{n-1}\right) \rightarrow 0, \quad n \rightarrow \infty .
$$

Since $\left\{p_{n}\right\}$ has exactly one limit point, p, we conclude that $f(p)=p$. This shows that f has a fixed point.

Suppose that p and q are two fixed points of f. Then

$$
d(p, q)=d(f(p), f(q)) \leq r d(p, q)
$$

which shows that $d(p, q)=0$ and $p=q$.

