Math 575
Fall 2018

## Solutions to Problem Set \# 9

(1) (p. 89, \# 1) (2 points) Suppose that $f: S \rightarrow T$ is continuous at $p$ and that $\left\{p_{n}\right\}$ is a sequence from $S$ with $\lim _{n \rightarrow \infty} p_{n}=p$. We will show that $f\left(p_{n}\right) \rightarrow$ $f(p)$ in $T$. Let $\varepsilon>0$ be given. There is a $\delta>0$ so that $d_{T}(f(p), f(q))<\varepsilon$ whenever $d_{S}(p, q)<\delta$. Now choose $N$ so that $d_{S}\left(p, p_{n}\right)<\delta$ whenever $n \geq N$. It now follows that $d_{T}\left(f(p), f\left(p_{n}\right)\right)<\varepsilon$ for all $n \geq N$, which shows that $f\left(p_{n}\right) \rightarrow f(p)$.
(2) (p. 89, \# 3) (4 points) Suppose that $f: S \rightarrow T, g: T \rightarrow U$, that $f$ is continuous at $p$, and that $g$ is continuous at $f(p)$. We wish to show that $g \circ f$ is continuous at $p$. Let $z=f(p)$ and let $\varepsilon>0$ be given. There is a $\delta_{1}>0$ so that $d_{U}\left((g(z), g(t))<\varepsilon\right.$ whenever $d_{T}(z, t)<\delta_{1}$. There is a $\delta_{2}>0$ so that $d_{T}(f(p), f(q))<\delta_{1}$ provided $d_{S}(p, q)<\delta_{2}$. Since $z=f(p)$, it now follows that $d_{U}((g \circ f)(p),(g \circ f)(q))<\varepsilon$ whenever $d_{S}(p, q)<\delta_{2}$. Hence, $g \circ f$ is continuous at $p$.
(3) (p. 89, \# 4) (4 points) Let $\varepsilon>0$ be given. We wish to show that the map $p \mapsto d(a, p)$ is uniformly continuous. If $p$ and $q$ are any points of $S$,

$$
d(a, p) \leq d(a, q)+d(q, p), \quad d(a, q) \leq d(a, p)+d(p, q)
$$

so that

$$
d(a, p)-d(a, q) \leq d(q, p), \quad d(a, q)-d(a, p) \leq d(p, q)
$$

from which we deduce

$$
|d(a, p)-d(a, q)| \leq d(p, q)
$$

Given $\varepsilon>0$, we can choose $\delta=\varepsilon$ to insure that $|d(a, p)-d(a, q)|<\varepsilon$ whenever $d(p, q)<\delta$. Since the choice of $\delta$ is independent of $p$ and $q$, the map $p \mapsto d(a, p)$ is uniformly continuous.
(4) (p. 89, \# 6) (not graded) Here is one example due to a student from another year (!) when I taught this course. Since $B$ is not a closed subset of $S$, there must be at least one limit point $q$ of $B$ that is not contained in $B$ and define

$$
f(p)=\frac{d(p, q)}{1+d(p, q)}
$$

Since $0 \leq d(p, q)$ and the function $g(t)=t /(t+1)$ satisfies $0 \leq t<1$ for $t \geq 0$, it follows that $0 \leq f(p)<1$ so $f$ is bounded.

The function $f$ is also uniformly continuous. This is a consequence of the estimate

$$
\left|\frac{t}{1+t}-\frac{s}{1+s}\right|=\left|\frac{t-s}{(1+t)(1+s)}\right| \leq|t-s|
$$

Because $q$ is a limit point of $B$, there is a sequence $\left\{p_{n}\right\}$ from $B$ so that $d\left(p_{n}, q\right) \rightarrow 0$ as $n \rightarrow \infty$, hence $f\left(p_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. From these facts, it follows that the greatest lower bound of the set $\{f(p): p \in B\}$ is zero. However, since $q \notin B$, it follows that $d(p, q)>0$ for every $p \in B$. Hence, $f$ does not assume a minimum value.

