MATH 676 HOW TO FUBINIZE

1. Fubini's Theorem

Let $d = d_1 + d_2$ where d_1 and d_2 are positive integers. Thus $\mathbb{R}^d = \mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$ and we may write points $z \in \mathbb{R}^d$ as z = (x, y) where $x \in \mathbb{R}^{d_1}$ and $y \in \mathbb{R}^{d_2}$. To visualize almost anything we talk about, think of $d_1 = d_2 = 1$ and d = 2. Given a measurable set $E \subset \mathbb{R}^d$, we denote by E^y and E_x the slices

$$E^y = \{x \in \mathbb{R}^{d_1} : (x, y) \in \mathbb{R}^d\}$$
 for fixed $y \in \mathbb{R}^{d_2}$

 $E_x = \{y \in \mathbb{R}^{d_2} : (x, y) \in \mathbb{R}^d\}$ for fixed $x \in \mathbb{R}^{d_1}$

A measurable function f on E has slices

$$f^y : E^y \to \mathbb{R}, \quad f^y(x) = f(x,y)$$

 $f_x : E_x \to \mathbb{R}, \quad f^x(y) = f(x,y)$

Theorem 1 (Fubini's Theorem). Suppose that f is an integrable function on \mathbb{R}^d = $\mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$.

(i) For almost every $y \in \mathbb{R}^{d_2}$, f^y is integrable on \mathbb{R}^{d_1} . (ii) The function $g(y) = \int_{\mathbb{R}^{d_1}} f^y(x)$ is integrable on \mathbb{R}^{d_2}

(iii) $\int_{R^{d_2}} \left(\int_{\mathbb{R}^{d_1}} f(x, y) \, dx \right)^{\mathbb{R}^{d_1}} dy = \int_{\mathbb{R}^d} f.$

2. Useful Facts from Measure Theory

Any open set may be written as a countable union of almost disjoint cubes. A G_{δ} set is a countable intersection of open sets. A subset E of \mathbb{R}^d is measurable if and only if E differs from a G_{δ} set by a set of measure zero (recall that the proof of this fact uses the definition of measurability).

Date: March 18, 2019.

MATH 676 HOW TO FUBINIZE

3. Outline of Proof

We let \mathcal{F} denote the collection of functions for which Fubini's theorem holds.

- (1) \mathcal{F} is closed under finite linear combinations
- (2) \mathcal{F} is closed under monotone convergence: if $\{f_k\}$ is a sequence of functions from \mathcal{F} and $f_k \searrow f$ or $f_k \nearrow f$, then $f \in \mathcal{F}$
- (3) If E is a G_{δ} set of finite measure, then χ_E belongs to \mathcal{F}
 - (a) If $Q = Q_1 \times Q_2$ is a closed cube inn $\mathbb{R}^d = \mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$, then $\chi_Q \in \mathcal{F}$
 - (b) If E is a subset of ∂Q where Q is a closed cube, then $\chi_E \in \mathcal{F}$
 - (c) If E is a finite union of closed cubes with disjoint interiors, then $\chi_E \in \mathcal{F}$
 - (d) If E is an open set of finite measure, then $\chi_E \in \mathcal{F}$
 - (e) If E is a G_{δ} set of finite measure, then $\chi_E \in \mathcal{F}$
- (4) If m(E) = 0, then $\chi_E \in \mathcal{F}$
- (5) If E is a measurable set of finite measure, then $\chi_E \in \mathcal{F}$
- (6) If f is integrable, then $f \in \mathcal{F}$