MATH 676 PRODUCT MEASURE

1. Tonelli's Theorem

Theorem 1. Suppose $f(x, y)$ is a nonnegative measurable function on $\mathbb{R}^{d_{1}} \times \mathbb{R}^{d_{2}}$. Then:

The proof is Fubini's theorem and monotone convergence
(i) For almost every $y \in \mathbb{R}^{d_{2}}$, the slice function f^{y} is measurable on $\mathbb{R}^{d_{1}}$.
(ii) The function $g(y)=\int_{R^{d_{1}}} f^{y}(x) d x$ is measurable on $\mathbb{R}^{d_{2}}$.
(iii) The formula

$$
\int_{R^{d_{2}}}\left(\int_{R^{d_{1}}} f(x, y) d x\right) d y=\int_{\mathbb{R}^{d}} f(x, y) d x d y
$$

holds in the extended sense.
Corollary 2. If E is a measurable set in $R^{d_{1}} \times \mathbb{R}^{d_{2}}$, then for almost every $y \in \mathbb{R}^{d_{2}}$ the slice E^{y} is a measurable subset of $\mathbb{R}^{d_{1}}$. Moreover, $m\left(E^{y}\right)$ is a measurable

An immediate consequence of Theorem 1 applied to χ_{E} function of y and

$$
m(E)=\int_{R^{d_{2}}} m\left(E^{y}\right) d y
$$

Note that there are non-measurable sets on $\mathbb{R} \times \mathbb{R}$ for which all of the slices E_{x} and E^{y} are measurable!

2. Product Measure

On the other hand:
Proposition 3. Suppose that $E_{1} \subset \mathbb{R}^{d_{1}}$ and $E_{2} \subset \mathbb{R}^{d_{2}}$ are measurable. Then $E=E_{1} \times E_{2}$ is a measurable subset of $\mathbb{R}^{d_{1}+d_{2}}$ and $m(E)=m\left(E_{1}\right) m\left(E_{2}\right)$ with the understanding that, if one of the sets has measure zero, then $m(E)=0 .{ }^{1}$
Proof. (Sketch) If E is measurable then the formula for $m(E)$ is an application of Theorem 1 to $\chi_{E}(x, y)=\chi_{E_{1}}(x) \chi_{E_{2}}(y)$. The measurability follows from approximating E_{1} and E_{2} by G_{δ} sets and using the fact that the Cartesian product of open sets is open.

Corollary 4. Suppose that f is a measurable function on $\mathbb{R}^{d_{1}}$. Then the function $F(x, y)=f(x)$ on $\mathbb{R}^{d_{1}} \times \mathbb{R}^{d_{2}}$ is measurable .
Proof. (Sketch) The set $\{F<a\}$ is $\{f<a\} \times \mathbb{R}^{d_{2}}$, so appeal to Proposition 3.
The next result connects Lebesgue integration to the "area under the graph."

[^0]Corollary 5. Suppose that f is a nonnegative function on \mathbb{R}^{d}, and let

$$
\mathcal{A}=\left\{(x, y) \in \mathbb{R}^{d} \times \mathbb{R}: 0 \leq y \leq f(x)\right\}
$$

Then:
(i) The function f is measurable on \mathbb{R}^{d} if and only if the set \mathcal{A} is measurable in \mathbb{R}^{d+1}.
(ii) If either f or \mathcal{A} is measurable, then

$$
\int_{\mathbb{R}^{d}} f(x) d x=m(\mathcal{A})
$$

Proof. (i) If f is measurable on \mathbb{R}^{d}, then $F(x, y)=y-f(x)$ is measurable on \mathbb{R}^{d+1} by Corollary 4 (applied twice). Since

$$
\mathcal{A}=\{F \leq 0\} \cap\{y \geq 0\}
$$

it follows that \mathcal{A} is measurable. Conversely, if \mathcal{A} is measurable, note that $\mathcal{A}_{x}=$ $[0, f(x)]$. Hence, by Theorem $1, m\left(\mathcal{A}_{x}\right)=f(x)$ is measurable. By the same Theorem, we may compute

$$
m(\mathcal{A})=\int \chi_{\mathcal{A}(x, y)} d x d y=\int_{\mathbb{R}^{d}} m\left(\mathcal{A}_{x}\right) d x=\int_{\mathbb{R}^{d}} f(x) d x
$$

The last result will pave the way for a discussion about the convolution of two functions f and g, namely

$$
(f * g)(x)=\int_{\mathbb{R}^{d}} f(x-y) g(y) d y
$$

Proposition 6. If f is a measurable function on \mathbb{R}^{d}, then the function $F(x, y)=$ $f(x-y)$ is measurable on $\mathbb{R}^{d} \times \mathbb{R}^{d}$.
Proof. For a subset E of \mathbb{R}^{d}, let

$$
\widetilde{E}=\left\{(x, y) \in \mathbb{R}^{d} \times \mathbb{R}^{d}: x-y \in \mathbb{R}^{d}\right\} .
$$

It will suffice to show that if E is measurable in \mathbb{R}^{d}, then \widetilde{E} is measurable in $\mathbb{R}^{d} \times \mathbb{R}^{d}$.
First, if O is open, then \widetilde{O} is open, and hence measurable.
Next, if E is a G_{δ} set, then \widetilde{E} is a G_{δ} set, hence measurable.
Now suppose that E is a set of measure zero in \mathbb{R}^{d}. There is a sequence \mathcal{O}_{n} of open sets with $m\left(\mathcal{O}_{n}\right) \rightarrow 0$ and $E \subset \mathcal{O}_{n}$ for each n. Let $B_{k}=\left\{y \in \mathbb{R}^{d}:|y|<k\right\}$. For each n and k

$$
\begin{aligned}
m\left(\widetilde{O_{n}} \cap B_{k}\right) & =\int \chi_{\mathcal{O}_{n}}(x-y) \chi_{B_{k}}(y) d y d x \\
& =\int\left(\int \chi_{\mathcal{O}_{n}}(x-y) d x\right) \chi_{B_{k}}(y) d y \\
& =m\left(\mathcal{O}_{n}\right) m\left(B_{k}\right)
\end{aligned}
$$

Thus if $\widetilde{E_{k}}=\widetilde{E} \cap B_{k}$, we can compute that $m\left(\widetilde{E_{k}}\right)=0$ by taking $n \rightarrow \infty$. Since $\widetilde{E_{k}} \nearrow \widetilde{E}$, it follows that $m(\widetilde{E})=0$.

Since any measurable set can be written $E=G-Z$ for G a G_{δ} set and Z a set of measure zero, it follows that E is measurable.

[^0]: Date: March 22, 2019.
 ${ }^{1}$ This covers the possibility that one of E_{1} or E_{2} has infinite measure and the other has measure zero.

