MATH 676
PRODUCT MEASURE

1. TONELLI’S THEOREM
Theorem 1. Suppose f(x,y) is a nonnegative measurable function on R% x R,
Then:

(i) For almost every y € R the slice function fY is measurable on R%.
(ii) The function g(y) = [pa, [¥(x)dx is measurable on R,
(iii) The formula

/ ( f(x,y)d:r) dy= [ fle.y)dedy
R42 R Rd

holds in the extended sense.

Corollary 2. If E is a measurable set in R™ x R% then for almost every y € R%
the slice EY is a measurable subset of R%. Moreover, m(EY) is a measurable
function of y and

m(E) = /Rdz m(EY) dy.

Note that there are non-measurable sets on R x R for which all of the slices E,
and EY are measurable!

2. PrRoDUCT MEASURE
On the other hand:

Proposition 3. Suppose that E; C RY and Ey ¢ R% are measurable. Then
E = Ey x By is a measurable subset of R4+92 and m(E) = m(Ey)m(Es) with the
understanding that, if one of the sets has measure zero, then m(E) = 0.

Proof. (Sketch) If E is measurable then the formula for m(FE) is an application of
Theorem 1 to xg(z,y) = x&, (z)xE,(y). The measurability follows from approxi-
mating F; and Es by G4 sets and using the fact that the Cartesian product of open
sets is open. O

Corollary 4. Suppose that f is a measurable function on R% . Then the function
F(z,y) = f(z) on R4 x R% is measurable.

Proof. (Sketch) The set {F < a} is {f < a} x R%, so appeal to Proposition 3. [

The next result connects Lebesgue integration to the “area under the graph.”
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IThis covers the possibility that one of Eq or E2 has infinite measure and the other has measure
Zero.
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The proof is Fubini’s the-
orem 'rln(l monotone con-
vergence

An immediate conse-
quence of Theorem 1
applied to xg
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Corollary 5. Suppose that f is a nonnegative function on R?, and let
A={(z,y) eR*xR:0<y < f(x)}.
Then:

(i) The function f is measurable on R? if and only if the set A is measurable in
RdJrl‘

(i1) If either f or A is measurable, then
f(z)dz = m(A).
Rd

Proof. (i) If f is measurable on R?, then F(x,y) =y — f(z) is measurable on R4**
by Corollary 4 (applied twice). Since

A={F<0}n{y >0}
it follows that A is measurable. Conversely, if A is measurable, note that A, =

[0, f(x)]. Hence, by Theorem 1, m(A,) = f(x) is measurable. By the same Theo-
rem, we may compute

m(A) = /XA(m,y) dr dy = m(A) de = y f(z)dx.

Rd
(]

The last result will pave the way for a discussion about the convolution of two
functions f and g, namely

(Fea)a) = [ fe=)aw) dv

Proposition 6. If f is a measurable function on RY, then the function F(x,y) =
f(z —y) is measurable on R? x R%,

Proof. For a subset E of R?, let
E={(z,y) eR*xR?: z —y e R}
It will suffice to show that if E is measurable in R?, then E is measurable in RY x RY.
First, if O is open, then O is open, and hence measurable.
Next, if F is a G set, then F is a G set, hence measurable.
Now suppose that E is a set of measure zero in R%. There is a sequence O,, of

open sets with m(0,,) — 0 and E C O,, for each n. Let By = {y € R? : |y| < k}.
For each n and k

m(0 1 By) = / X (@ — y)x5, (v) dy de

— / ( / xo, (=) da:) X8, (y) dy

= m(O,)m(By).

Thus if B, = E N By, we can compute that m(E\;;) = 0 by taking n — oco. Since
E, 7 E, it follows that m(E) = 0.
Since any measurable set can be written £ = G — Z for G a G5 set and Z a set

of measure zero, it follows that F is measurable.
|



