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1. Tonelli’s Theorem
The proof is Fubini’s the-
orem and monotone con-
vergence

Theorem 1. Suppose f(x, y) is a nonnegative measurable function on Rd1 × Rd2 .
Then:

(i) For almost every y ∈ Rd2 , the slice function fy is measurable on Rd1 .
(ii) The function g(y) =

∫
Rd1

fy(x) dx is measurable on Rd2 .
(iii) The formula ∫

Rd2

(∫
Rd1

f(x, y) dx

)
dy =

∫
Rd

f(x, y) dx dy

holds in the extended sense.
An immediate conse-
quence of Theorem 1
applied to χE

Corollary 2. If E is a measurable set in Rd1 ×Rd2 , then for almost every y ∈ Rd2
the slice Ey is a measurable subset of Rd1 . Moreover, m(Ey) is a measurable
function of y and

m(E) =

∫
Rd2

m(Ey) dy.

Note that there are non-measurable sets on R× R for which all of the slices Ex
and Ey are measurable!

2. Product Measure

On the other hand:

Proposition 3. Suppose that E1 ⊂ Rd1 and E2 ⊂ Rd2 are measurable. Then
E = E1 × E2 is a measurable subset of Rd1+d2 and m(E) = m(E1)m(E2) with the
understanding that, if one of the sets has measure zero, then m(E) = 0.1

Proof. (Sketch) If E is measurable then the formula for m(E) is an application of
Theorem 1 to χE(x, y) = χE1

(x)χE2
(y). The measurability follows from approxi-

mating E1 and E2 by Gδ sets and using the fact that the Cartesian product of open
sets is open. �

Corollary 4. Suppose that f is a measurable function on Rd1 . Then the function
F (x, y) = f(x) on Rd1 × Rd2 is measurable.

Proof. (Sketch) The set {F < a} is {f < a} ×Rd2 , so appeal to Proposition 3. �

The next result connects Lebesgue integration to the “area under the graph.”
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1This covers the possibility that one of E1 or E2 has infinite measure and the other has measure

zero.
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Corollary 5. Suppose that f is a nonnegative function on Rd, and let

A =
{

(x, y) ∈ Rd × R : 0 ≤ y ≤ f(x)
}
.

Then:

(i) The function f is measurable on Rd if and only if the set A is measurable in
Rd+1.

(ii) If either f or A is measurable, then∫
Rd

f(x) dx = m(A).

Proof. (i) If f is measurable on Rd, then F (x, y) = y− f(x) is measurable on Rd+1

by Corollary 4 (applied twice). Since

A = {F ≤ 0} ∩ {y ≥ 0}
it follows that A is measurable. Conversely, if A is measurable, note that Ax =
[0, f(x)]. Hence, by Theorem 1, m(Ax) = f(x) is measurable. By the same Theo-
rem, we may compute

m(A) =

∫
χA(x,y) dx dy =

∫
Rd

m(Ax) dx =

∫
Rd

f(x) dx.

�

The last result will pave the way for a discussion about the convolution of two
functions f and g, namely

(f ∗ g)(x) =

∫
Rd

f(x− y)g(y) dy.

Proposition 6. If f is a measurable function on Rd, then the function F (x, y) =
f(x− y) is measurable on Rd × Rd.

Proof. For a subset E of Rd, let

Ẽ = {(x, y) ∈ Rd × Rd : x− y ∈ Rd}.

It will suffice to show that if E is measurable in Rd, then Ẽ is measurable in Rd×Rd.
First, if O is open, then Õ is open, and hence measurable.

Next, if E is a Gδ set, then Ẽ is a Gδ set, hence measurable.
Now suppose that E is a set of measure zero in Rd. There is a sequence On of

open sets with m(On) → 0 and E ⊂ On for each n. Let Bk = {y ∈ Rd : |y| < k}.
For each n and k

m(Õn ∩Bk) =

∫
χOn(x− y)χBk

(y) dy dx

=

∫ (∫
χOn(x− y) dx

)
χBk

(y) dy

= m(On)m(Bk).

Thus if Ẽk = Ẽ ∩ Bk, we can compute that m(Ẽk) = 0 by taking n → ∞. Since

Ẽk ↗ Ẽ, it follows that m(Ẽ) = 0.
Since any measurable set can be written E = G− Z for G a Gδ set and Z a set

of measure zero, it follows that E is measurable.
�


