MATH 676 PRODUCT MEASURE

1. TONELLI'S THEOREM

Theorem 1. Suppose f(x, y) is a nonnegative measurable function on $\mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$. Then:

(i) For almost every $y \in \mathbb{R}^{d_2}$, the slice function f^y is measurable on \mathbb{R}^{d_1} .

(ii) The function $g(y) = \int_{\mathbb{R}^{d_1}} f^y(x) dx$ is measurable on \mathbb{R}^{d_2} .

(iii) The formula

$$\int_{R^{d_2}} \left(\int_{R^{d_1}} f(x, y) \, dx \right) \, dy = \int_{\mathbb{R}^d} f(x, y) \, dx \, dy$$

holds in the extended sense.

Corollary 2. If E is a measurable set in $\mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$, then for almost every $y \in \mathbb{R}^{d_2}$ the slice E^y is a measurable subset of \mathbb{R}^{d_1} . Moreover, $m(E^y)$ is a measurable function of y and

$$m(E) = \int_{R^{d_2}} m(E^y) \, dy$$

Note that there are non-measurable sets on $\mathbb{R} \times \mathbb{R}$ for which all of the slices E_x and E^y are measurable!

2. Product Measure

On the other hand:

Proposition 3. Suppose that $E_1 \subset \mathbb{R}^{d_1}$ and $E_2 \subset \mathbb{R}^{d_2}$ are measurable. Then $E = E_1 \times E_2$ is a measurable subset of $\mathbb{R}^{d_1+d_2}$ and $m(E) = m(E_1)m(E_2)$ with the understanding that, if one of the sets has measure zero, then $m(E) = 0.^1$

Proof. (Sketch) If E is measurable then the formula for m(E) is an application of Theorem 1 to $\chi_E(x, y) = \chi_{E_1}(x)\chi_{E_2}(y)$. The measurability follows from approximating E_1 and E_2 by G_{δ} sets and using the fact that the Cartesian product of open sets is open.

Corollary 4. Suppose that f is a measurable function on \mathbb{R}^{d_1} . Then the function F(x,y) = f(x) on $\mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$ is measurable.

Proof. (Sketch) The set $\{F < a\}$ is $\{f < a\} \times \mathbb{R}^{d_2}$, so appeal to Proposition 3. \Box

The next result connects Lebesgue integration to the "area under the graph."

The proof is Fubini's theorem and monotone convergence

An immediate consequence of Theorem 1 applied to χ_E

Date: March 22, 2019.

¹This covers the possibility that one of E_1 or E_2 has infinite measure and the other has measure zero.

Corollary 5. Suppose that f is a nonnegative function on \mathbb{R}^d , and let

$$\mathcal{A} = \left\{ (x, y) \in \mathbb{R}^d \times \mathbb{R} : 0 \le y \le f(x) \right\}.$$

Then:

- (i) The function f is measurable on \mathbb{R}^d if and only if the set \mathcal{A} is measurable in \mathbb{R}^{d+1} .
- (ii) If either f or A is measurable, then

$$\int_{\mathbb{R}^d} f(x) \, dx = m(\mathcal{A}).$$

Proof. (i) If f is measurable on \mathbb{R}^d , then F(x, y) = y - f(x) is measurable on \mathbb{R}^{d+1} by Corollary 4 (applied twice). Since

$$\mathcal{A} = \{F \le 0\} \cap \{y \ge 0\}$$

it follows that \mathcal{A} is measurable. Conversely, if \mathcal{A} is measurable, note that $\mathcal{A}_x = [0, f(x)]$. Hence, by Theorem 1, $m(\mathcal{A}_x) = f(x)$ is measurable. By the same Theorem, we may compute

$$m(\mathcal{A}) = \int \chi_{\mathcal{A}(x,y)} \, dx \, dy = \int_{\mathbb{R}^d} m(\mathcal{A}_x) \, dx = \int_{\mathbb{R}^d} f(x) \, dx.$$

The last result will pave the way for a discussion about the *convolution* of two functions f and g, namely

$$(f * g)(x) = \int_{\mathbb{R}^d} f(x - y)g(y) \, dy$$

Proposition 6. If f is a measurable function on \mathbb{R}^d , then the function F(x, y) = f(x - y) is measurable on $\mathbb{R}^d \times \mathbb{R}^d$.

Proof. For a subset E of \mathbb{R}^d , let

$$\widetilde{E} = \{ (x, y) \in \mathbb{R}^d \times \mathbb{R}^d : x - y \in \mathbb{R}^d \}.$$

It will suffice to show that if E is measurable in \mathbb{R}^d , then \widetilde{E} is measurable in $\mathbb{R}^d \times \mathbb{R}^d$.

First, if O is open, then \widetilde{O} is open, and hence measurable.

Next, if E is a G_{δ} set, then \tilde{E} is a G_{δ} set, hence measurable.

Now suppose that E is a set of measure zero in \mathbb{R}^d . There is a sequence \mathcal{O}_n of open sets with $m(\mathcal{O}_n) \to 0$ and $E \subset \mathcal{O}_n$ for each n. Let $B_k = \{y \in \mathbb{R}^d : |y| < k\}$. For each n and k

$$m(\widetilde{O_n} \cap B_k) = \int \chi_{\mathcal{O}_n}(x-y)\chi_{B_k}(y) \, dy \, dx$$
$$= \int \left(\int \chi_{\mathcal{O}_n}(x-y) \, dx\right) \, \chi_{B_k}(y) \, dy$$
$$= m(\mathcal{O}_n)m(B_k).$$

Thus if $\widetilde{E}_k = \widetilde{E} \cap B_k$, we can compute that $m(\widetilde{E}_k) = 0$ by taking $n \to \infty$. Since $\widetilde{E}_k \nearrow \widetilde{E}$, it follows that $m(\widetilde{E}) = 0$.

Since any measurable set can be written E = G - Z for G a G_{δ} set and Z a set of measure zero, it follows that E is measurable.