Math 676

Final Exam

Your Name: \qquad

Instructions: This is a two-hour, closed-book exam. You must answer all five of the problems in the space provided.

Problem	1	2	3	4	5	Total
Possible	20	20	20	20	20	100
Score						

1. (20 points) A real-valued function f on \mathbb{R} is said to be measurable if the sets $E_{\alpha}=\{x \in$ $\mathbb{R}: f(x)>\alpha\}$ are measurable sets for each $\alpha \in \mathbb{R}$. Suppose that $\left\{f_{k}\right\}_{k=1}^{\infty}$ is a monotone nondecreasing sequence of measurable functions with $\lim _{k \rightarrow \infty} f_{k}(x)=f(x)$ for every $x \in \mathbb{R}$. Using the definition of measurability, show directly that f is a measurable function.

Solution:

Fix $\alpha \in \mathbb{R}$ and let

$$
E_{k}=\left\{x \in \mathbb{R}: f_{k}(x)>\alpha\right\} .
$$

Denote

$$
E=\{x \in \mathbb{R}: f(x)>\alpha\} .
$$

Since $f_{k}(x) \leq f_{k+1}(x)$ for each x, it follows that any $x \in E_{k}$ belongs to E_{k+1}. Thus, $\left\{E_{k}\right\}$ is an increasing sequence of measurable sets.
We claim that $E=\cup_{k=1}^{\infty} E_{k}$. If $x \in E$, then there is a k so that $f_{k}(x)>\alpha$. Hence $E \subset \cup_{k=1}^{\infty} E_{k}$. On the other hand, if $x \in \cup_{k=1}^{\infty} E_{k}, x \in E_{k}$ for at least one k, and hence $f(x) \geq f_{k}(x)>\alpha$.
Since each E_{k} is measurable, E, as a countable union of measurable sets, is measurable.
2. (20 points) The Fourier transform \widehat{f} of a function $f \in L^{1}(\mathbb{R})$ is defined as

$$
\widehat{f}(\xi)=\int_{\mathbb{R}} e^{-2 \pi i x \xi} f(x) d x
$$

(a) (5 points) Show that \widehat{f} is a bounded, continuous function.

Solution: Since $f \in L^{1}(\mathbb{R})$, it follows from the triangle inequality that

$$
|\widehat{f}(\xi)| \leq \int|f(x)| d x=\|f\|_{L^{1}}
$$

Since $\left|e^{-2 \pi i x \xi} f(x)\right| \leq|f(x)|$ and $\lim _{h \rightarrow 0} e^{2 \pi i(x+h) \xi} f(x)=e^{2 \pi i x \xi} f(x)$ for almost every x (we need finiteness of $f(x)$ which is true a.e. since f is integrable, the continuity follows by the Dominated Convergence Theorem. ${ }^{1}$
(b) (5 points) Show that if $\chi_{[a, b]}(x)$ is the characteristic function of $[a, b]$, then

$$
\int e^{2 \pi i x \xi} \chi_{[a, b]}(x) d x=\frac{e^{2 \pi i b \xi}-e^{2 \pi i a \xi}}{2 \pi i \xi}
$$

You may assume that the complex-valued function $e^{2 \pi i c x}$ has antiderivative $\frac{e^{2 \pi i c x}}{2 \pi i c}$.
Solution: A direct computation.
(c) (10 points) Show that $\widehat{f}(\xi) \rightarrow 0$ as $\xi \rightarrow \infty$. You may assume that linear combinations of characteristic functions of closed intervals are dense in $L^{1}(\mathbb{R})$.

Solution: From the formula above we see that

$$
\lim _{|\xi| \rightarrow \infty} \widehat{\chi_{[a, b]}}(\xi)=0
$$

If $f \in L^{1}$, for any $\varepsilon>0$ we may approximate f as a finite linear combination $\sum_{k=1}^{N} c_{k} \chi_{k}$ where χ is the characteristic function of an interval and

$$
\left\|f-\sum_{k=1}^{N} c_{k} \chi_{k}\right\|_{L^{1}}<\varepsilon / 2
$$

On the other hand, we may find R so that

$$
\sum_{k=1}^{N}\left|c_{k}\right|\left|\widehat{\chi_{[a, b]}}(\xi)\right|<\varepsilon / 2
$$

for $|\xi| \geq R$. Hence

$$
|\widehat{f}| \leq\left\|f-\sum_{k} c_{k} \chi_{k}\right\|_{L^{1}}+\sum_{k=1}^{N}\left|c_{k}\right|\left|\widehat{\chi_{[a, b]}}(\xi)\right|<\varepsilon .
$$

3. (20 points) Suppose that $f(x, y)$ is a measurable function on $[0,1] \times[0,1]$, that $f(x, y)$ is an integrable function of y for each x, and that $(\partial f / \partial x)(x, y)$ is a bounded function of (x, y) for $(x, y) \in(0,1) \times(0,1)$
(a) (10 points) Show that $\partial f / \partial y$ is a measurable function of y for each x. In this problem, you may assume that the pointwise limit of a sequence of measurable functions is measurable.

Solution: Fix $x \in[0,1]$, fix a sequence $\left\{h_{n}\right\}$ with $h_{n} \rightarrow 0$, and let $g_{n}(y)=$ $h_{n}^{-1}\left[f\left(x+h_{n}, y\right)-f(x, y)\right] .^{2}$ Each function $g_{n}(y)$ is measurable since $f(x, \cdot)$ is integrable, hence measurable, for each x. Since f is differentiable with respect to y we have $g_{n}(y) \rightarrow f_{x}(y)$ as $n \rightarrow \infty$. Hence $f_{x}(y)$, as a pointwise limit of a sequence of measurable functions, is measurable.
Alternatively, one can note that the function

$$
F_{n}(x, y)=h_{n}^{-1}\left[f\left(x+h_{n}, y\right)-f(x, y)\right]
$$

is measurable on $[0,1] \times[0,1]$ and converges pointwise almost everywhere as $n \rightarrow \infty$ to a bounded measurable function on $[0,1] \times[0,1]$, and hence $\partial f / \partial x$ is a bounded measurable function on $[0,1] \times[0,1]$. It then follows from Tonnelli's Theorem that $(\partial f / \partial x)(x, \cdot)$ is measurable on $[0,1]$ for almost every x.
(b) (10 points) Show that

$$
\frac{\partial}{\partial x}\left(\int_{0}^{1} f(x, y) d y\right)=\int_{0}^{1} \frac{\partial f}{\partial x}(x, y) d y
$$

Solution: Let

$$
G(x)=\int_{0}^{1} f(x, y) d y
$$

We seek to show that G is differentiable and

$$
G^{\prime}(x)=\int_{0}^{1} \frac{\partial f}{\partial x}(x, y) d y
$$

Consider the difference quotient (with $h=1 / n$)

$$
\frac{G(x+h)-G(x)}{h}=\int_{0}^{1} \frac{f(x+1 / n, y)-f(x, y)}{1 / n} d y
$$

For each fixed x,

$$
F_{n}(y)=\frac{f(x+1 / n, y)-f(x, y)}{1 / n}
$$

converge pointwise to the bounded function $(\partial f / \partial x)(x, y)$. Moreover, by the Mean Value Theorem, for each n there is a c_{n} dependening on n and y so that

$$
\left|\frac{f(x+1 / n, y)-f(x, y)}{1 / n}\right|=\left|f_{x}\left(c_{n}, y\right)\right| \leq M
$$

where M is a constant that bounds $f_{x}(x, y)$ for $(x, y) \in(0,1) \times(0,1)$. Since the integrand converges pointwise to $(\partial f / \partial x)(x, y)$ and the approximants are uniformly bounded, it follows from the Bounded Convergence Theorem that the desired equality holds.
4. (20 points) Suppose that f is absolutely continuous and Lebesgue integrable on \mathbb{R}. Show that $\lim _{|x| \rightarrow \infty} f(x)=0$.

Solution: Suppose that $\lim \sup _{|x| \rightarrow \infty}|f(x)|=c>0$. There is a sequence of points $\left\{x_{n}\right\}$ with $x_{n} \rightarrow \infty$ as $n \rightarrow \infty$ so that $\left|f\left(x_{n}\right)\right| \geq c / 2$. By passing to a subsequence if needed, we may assume that $\left|x_{n+1}-x_{n}\right|>1$. Since f is absolutely continuous, there is a $\delta>0$ so that $|f(x)-f(y)|<c / 4$ if $|x-y|<\delta$. Hence $|f(y)|>c / 4$ on an infinite set of disjoint intervals $\left(x_{n}-\delta, x_{n}+\delta\right)$, which contradicts the fact that f is Lebesgue integrable.
5. (20 points) For both parts of this problem, suppose that f is an absolutely continuous function on $[a, b]$.
(a) (10 points) Show that f maps sets of measure zero to sets of measure zero.

Solution: Suppose that Z is a set of measure zero in $[a, b]$ and let $\varepsilon>0$ be given. There is a $\delta>0$ so that for any finite collection of disjoint intervals $\left\{\left(c_{k}, d_{k}\right)\right\}, \sum_{k}\left|F\left(d_{k}\right)-F\left(c_{k}\right)\right|<\varepsilon$ whenever $\sum_{k}\left|d_{k}-c_{k}\right|<\delta$. We can find an open set \mathcal{O} so that $Z \subset \mathcal{O}$ and $m(\mathcal{O})<\delta$. The set \mathcal{O} is a disjoint union of open intervals $I_{k}=\left(a_{k}, b_{k}\right)$, and hence $\sum_{k=1}^{\infty}\left|b_{k}-a_{k}\right|<\delta$. Because f is continuous on $\left[a_{k}, b_{k}\right], f$ achieves absolute extrema at points c_{k} and d_{k} in $\left[a_{k}, b_{k}\right]$. Assume that $c_{k}<d_{k}$. Then $F\left(I_{k}\right)$ is an interval of length at most $\left|F\left(c_{k}\right)-F\left(d_{k}\right)\right|$. For any $N, \sum_{k=1}^{N}\left|F\left(c_{k}\right)-F\left(d_{k}\right)\right|<\varepsilon$ since $\sum_{k=1}^{N}\left|d_{k}-c_{k}\right| \leq \sum_{k=1}^{N} \mid b_{k}-a_{k}<\delta$. It now follows that $\sum_{k=1}^{\infty}\left|F\left(d_{k}\right)-F\left(c_{k}\right)\right| \leq \varepsilon$, so the measure of $f(\mathcal{O})$ is at most ε. Since $\varepsilon>0$ is arbitrary, it follows that $f(Z)$ has measure zero.
(b) (10 points) Using the result of part (a), show that f maps measurable sets to measurable sets.

Solution: Any measurable set $E \subset[a, b]$ is the union of a set of measure zero and an F_{σ} set, i.e., a countable intersection of closed sets. Thus it suffices to show that f takes F_{σ} sets to F_{σ} sets. Any closed subset C of $[a, b]$ is compact, and hence $f(C)$ is compact since f is continuous. It follows that if $F=\cap_{n=1}^{\infty} C_{n}$, then $f(F)=\cap_{n=1}^{\infty} f\left(C_{n}\right)$ is an F_{σ} set. Hence, f maps measurable sets into measurable sets.

