MATH 676
 PROBLEM SET \#1 SOLUTIONS

(1) (Stein and Shakarchi, page 37, Exercise 1, Not graded) Prove that the Cantor set \mathcal{C} is totally disconnected and perfect.

Recall that $\mathcal{C}=\cap_{k=1}^{\infty} \mathcal{C}_{k}$ where \mathcal{C}_{k} is the union of 2^{k} intervals of length 3^{-k}. First, suppose that $x, y \in \mathcal{C}$ with $x \neq y$. There a positive integer k so that $|x-y|>3^{k}$, so that x and y must lie in different intervals of \mathcal{C}_{k}. This shows that the interval $[x, y]$ is not contained in \mathcal{C}.

Second, given any $x \in \mathcal{C}$, for each k there is an interval I_{k} of \mathcal{C}_{k} containing x. At least one endpoint x_{k} of I_{k} satisfies $\left|x-x_{k}\right|<3^{-k}$, and each such x_{k} belongs to \mathcal{C}. Thus the sequence $\left\{x_{k}\right\}$ is a sequence from \mathcal{C} that converges to x, so that x is not an isolated point.
(2) (Stein and Shakarchi, page 38, Exercise 4) Let $\widehat{\mathcal{C}}=\cap_{k=1}^{\infty} \widehat{\mathcal{C}_{k}}$ where at each stage one removes 2^{k-1} disjoint, centrally situated open intervals each of length ℓ_{k}, so chosen that

$$
\sum_{i=1}^{\infty} 2^{i-1} \ell_{i}<1
$$

(a) (2 points) We claim that $m(\widehat{\mathcal{C}})=1-\sum_{k=1}^{\infty} 2^{i-1} \ell_{i}$. One can prove this using monotonicity of Lebesgue measure (Theorem 3.3). Let $D_{n}=\cap_{k=1}^{n} \widehat{\mathcal{C}}_{k}$. Then $D_{n} \searrow \widehat{\mathcal{C}}$ and $m\left(D_{n}\right)=1-\sum_{i=1}^{n} 2^{i-1} \ell_{i}$, so by monotonicity $m(D)=\lim _{n \rightarrow \infty} m\left(D_{n}\right)=1-\sum_{i=1}^{\infty} 2^{i-1} \ell_{i}$.
(b) (3 points) If $x \in \widehat{\mathcal{C}}$, then $x \in \widehat{\mathcal{C}}_{k}$ for all k. Any $x \in \widehat{\mathcal{C}}_{k}$ must lie in one of 2^{k} remaining intervals, say J_{k}. Note that all of the 2^{k} intervals of $\widehat{\mathcal{C}}_{k}$ have the same size and hence have length less than 2^{-k}. Each such interval J_{k} must be adjacent to a removed interval I_{k} of length ℓ_{k}, so that if $x_{k} \in I_{k}$ then $\left|x_{k}-x\right| \leq 2^{-k}+\ell_{k}$. Hence $x_{k} \notin \widehat{\mathcal{C}_{k}}$ but $x_{k} \rightarrow x$ as $k \rightarrow \infty$. Note that $\ell_{k} \rightarrow 0$ as $k \rightarrow \infty$, so $\left|I_{k}\right| \rightarrow 0$ as $k \rightarrow \infty$.
(c) (3 points) The set $\widehat{\mathcal{C}}$ is a countable intersection of closed sets and therefore closed.
If $x \in \widehat{\mathcal{C}}$, then for each k, x belongs to an interval of size ℓ_{k}. Since the endpoints of this interval belong to $\widehat{\mathcal{C}}$, we can pick one, say y_{k}, so that $\left|y_{k}-x\right|<\ell_{k}$. Since all endpoints belong to $\widehat{\mathcal{C}}$, it follows that $\widehat{\mathcal{C}}$ has no isolated points.
To see that $\widehat{\mathcal{C}}$ can contain no open interval, fix $x \in \widehat{\mathcal{C}}$. Any interval $(x-\varepsilon, x+\varepsilon)$ contains an element of $[0,1]-\widehat{\mathcal{C}}$ by part (b), hence there is no open interval containing any point of $\widehat{\mathcal{C}}$.

[^0](d) (2 points) We have shown that any countable set has measure 0 . It therefore follows from (a) that $\widehat{\mathcal{C}}$ is uncountable.
(3) (Not graded) Suppose that $E \subset \mathbb{R}^{d}$. Since any cover of E by cubes $\left\{Q_{i}\right\}$ is also a cover by rectangles, it follows that
$$
m_{*}^{\mathcal{R}}(E) \leq \sum_{i=1}^{\infty}\left|Q_{i}\right|
$$
for any such cover. It follows that $m_{*}^{\mathcal{R}}(E) \leq m_{*}(E)$.
To prove the opposite inequality, it suffices to show that for every cover $\left\{R_{i}\right\}$ of E by rectangles, there is a cover $\left\{Q_{i}\right\}$ by cubes so that
$$
\sum_{i=1}^{\infty}\left|Q_{i}\right| \leq \sum_{i=1}^{\infty}\left|R_{i}\right|+\varepsilon
$$

To prove this, it suffices to show that we can find a cover of each rectangle R_{i} by finitely many cubes $Q_{i, k}, 1 \leq k \leq N_{i}$, with $\sum_{k=1}^{N_{i}}\left|Q_{i, k}\right| \leq\left|R_{i}\right|+\varepsilon 2^{-i}$. Consider a rectangle $R=\left[0, \ell_{1}\right] \times \ldots \times\left[0, \ell_{d}\right]$. We can find rational numbers r_{1}, \ldots, r_{d} so that $\ell_{i}<r_{i}$ but $r_{1} \times \ldots \times r_{d}<\ell_{1} \times \ldots \times$ $e l l_{d}+\varepsilon$. The rational rectangle $R^{\prime}=\left[0, r_{1}\right] \times \ldots \times\left[0, r_{d}\right]$ can be subdivided exactly into cubes: if $r_{i}=m_{i} / n_{i}$, we can subdivide into finitely many cubes Q_{i} of side $1 / N$ where $N=n_{1} n_{2} \ldots n_{d}$. By Lemma 1.1 of Stein and Shakarchi, $\left|R^{\prime}\right|=\sum_{i}\left|Q_{i}\right|<|R|+\varepsilon$.

[^0]: Date: January 23, 2019.

