MATH 676 PROBLEM SET #1 SOLUTIONS

(1) (Stein and Shakarchi, page 37, Exercise 1, Not graded) Prove that the Cantor set C is totally disconnected and perfect.

Recall that $\mathcal{C} = \bigcap_{k=1}^{\infty} \mathcal{C}_k$ where \mathcal{C}_k is the union of 2^k intervals of length 3^{-k} . First, suppose that $x, y \in \mathcal{C}$ with $x \neq y$. There a positive integer k so that $|x - y| > 3^k$, so that x and y must lie in different intervals of \mathcal{C}_k . This shows that the interval [x, y] is not contained in \mathcal{C} .

Second, given any $x \in C$, for each k there is an interval I_k of C_k containing x. At least one endpoint x_k of I_k satisfies $|x - x_k| < 3^{-k}$, and each such x_k belongs to C. Thus the sequence $\{x_k\}$ is a sequence from C that converges to x, so that x is not an isolated point.

(2) (Stein and Shakarchi, page 38, Exercise 4) Let $\widehat{\mathcal{C}} = \bigcap_{k=1}^{\infty} \widehat{\mathcal{C}}_k$ where at each stage one removes 2^{k-1} disjoint, centrally situated open intervals each of length ℓ_k , so chosen that

$$\sum_{i=1}^{\infty} 2^{i-1}\ell_i < 1.$$

- (a) (2 points) We claim that m(Ĉ) = 1 ∑_{k=1}[∞] 2ⁱ⁻¹ℓ_i. One can prove this using monotonicity of Lebesgue measure (Theorem 3.3). Let D_n = ∩_{k=1}ⁿĈ_k. Then D_n ∖ Ĉ and m(D_n) = 1 ∑_{i=1}ⁿ 2ⁱ⁻¹ℓ_i, so by monotonicity m(D) = lim_{n→∞} m(D_n) = 1 ∑_{i=1}[∞] 2ⁱ⁻¹ℓ_i.
 (b) (3 points) If x ∈ Ĉ, then x ∈ Ĉ_k for all k. Any x ∈ Ĉ_k must lie in one
- (b) (3 points) If $x \in C$, then $x \in C_k$ for all k. Any $x \in C_k$ must lie in one of 2^k remaining intervals, say J_k . Note that all of the 2^k intervals of \widehat{C}_k have the same size and hence have length less than 2^{-k} . Each such interval J_k must be adjacent to a removed interval I_k of length ℓ_k , so that if $x_k \in I_k$ then $|x_k - x| \leq 2^{-k} + \ell_k$. Hence $x_k \notin \widehat{C}_k$ but $x_k \to x$ as $k \to \infty$. Note that $\ell_k \to 0$ as $k \to \infty$, so $|I_k| \to 0$ as $k \to \infty$.
- (c) (3 points) The set Ĉ is a countable intersection of closed sets and therefore closed.
 If x ∈ Ĉ, then for each k, x belongs to an interval of size ℓ_k. Since the endpoints of this interval belong to Ĉ, we can pick one, say u_k, so that

endpoints of this interval belong to \widehat{C} , we can pick one, say y_k , so that $|y_k - x| < \ell_k$. Since all endpoints belong to \widehat{C} , it follows that \widehat{C} has no isolated points.

To see that $\widehat{\mathcal{C}}$ can contain no open interval, fix $x \in \widehat{\mathcal{C}}$. Any interval $(x - \varepsilon, x + \varepsilon)$ contains an element of $[0, 1] - \widehat{\mathcal{C}}$ by part (b), hence there is no open interval containing any point of $\widehat{\mathcal{C}}$.

Date: January 23, 2019.

- (d) (2 points) We have shown that any countable set has measure 0. It therefore follows from (a) that $\widehat{\mathcal{C}}$ is uncountable.
- (3) (Not graded) Suppose that $E \subset \mathbb{R}^d$. Since any cover of E by cubes $\{Q_i\}$ is also a cover by rectangles, it follows that

$$m_*^{\mathcal{R}}(E) \le \sum_{i=1}^{\infty} |Q_i|$$

for any such cover. It follows that $m_*^{\mathcal{R}}(E) \leq m_*(E)$.

To prove the opposite inequality, it suffices to show that for every cover $\{R_i\}$ of E by rectangles, there is a cover $\{Q_i\}$ by cubes so that

$$\sum_{i=1}^{\infty} |Q_i| \le \sum_{i=1}^{\infty} |R_i| + \varepsilon.$$

To prove this, it suffices to show that we can find a cover of each rectangle R_i by finitely many cubes $Q_{i,k}$, $1 \le k \le N_i$, with $\sum_{k=1}^{N_i} |Q_{i,k}| \le |R_i| + \varepsilon 2^{-i}$. Consider a rectangle $R = [0, \ell_1] \times \ldots \times [0, \ell_d]$. We can find rational numbers r_1, \ldots, r_d so that $\ell_i < r_i$ but $r_1 \times \ldots \times r_d < \ell_1 \times \ldots \times$

 $ell_d + \varepsilon$. The rational rectangle $R' = [0, r_1] \times \ldots \times [0, r_d]$ can be subdivided exactly into cubes: if $r_i = m_i/n_i$, we can subdivide into finitely many cubes Q_i of side 1/N where $N = n_1 n_2 \dots n_d$. By Lemma 1.1 of Stein and Shakarchi, $|R'| = \sum_i |Q_i| < |R| + \varepsilon$.