MATH 676 PROBLEM SET \#2 SOLUTIONS

(1) (Stein and Shakarchi, page 39, Exercise 5, Not graded) Suppose that E is a given set and

$$
\mathcal{O}_{n}=\{x: d(x, E)<1 / n\}
$$

(a) Show that if E is compact, then $m(E)=\lim _{n \rightarrow \infty} m\left(\mathcal{O}_{n}\right)$.
(b) Show that the conclusion in (a) may be false if E is closed and unbounded, or if E is open and bounded.
(a) First, observe that, since E is compact, the set E (and hence all of the sets \mathcal{O}_{n}) are bounded sets, and hence have finite measure. Next, observe that $\mathcal{O}_{n+1} \subset \mathcal{O}_{n}$. We claim that $E=\cap_{n=1}^{\infty} \mathcal{O}_{n}$. If so, then $\mathcal{O}_{n} \searrow E$ and the result follows by the monotonicity property of Lebesgue measure, Corollary 3.3 (ii).
Clearly $E \subset \cap_{n=1}^{\infty} \mathcal{O}_{n}$ so we need to prove the opposite inclusion. If $x \in \cap_{n=1}^{\infty} \mathcal{O}_{n}$, then for each n there is an $x_{n} \in E$ with $d\left(x_{n}, x\right)<1 / n$. Hence x is a limit point of E. Since E is closed, it now follows that $x \in E$.
Notice that we used the fact that E is closed and bounded.
(b) The set \mathbb{Z}^{d} consisting of points in \mathbb{R}^{d} with integer coordinates is unbounded and closed. However, each of the sets \mathcal{O}_{n} has infinite measure. On the other hand, if \mathcal{C} is the fat Cantor set from homework 1 and $E=[0,1] \backslash \mathcal{C}$. It follows from problem 4, part (b) that $I \subset \mathcal{O}_{n}$ for any n, so that $\lim _{n \rightarrow \infty} m\left(\mathcal{O}_{n}\right)=1$. But $m(E)=\sum_{k=0}^{\infty} 2^{k} \ell_{k}<1$, so $\lim _{n \rightarrow \infty} m\left(\mathcal{O}_{n}\right)>m(E)$ strictly.
(2) (Stein and Shakarchi, page 39, Exercise 8) Suppose that L is a linear transformation of \mathbb{R}^{d}. Show that if E is a measurable subset of \mathbb{R}^{d}, then $L(E)$ is also measurable.

It suffices to show that:
(i) L takes sets of measure zero to sets of measure zero, and
(ii) L takes F_{σ} sets to F_{σ} sets. If so, we can use the fact that any measurable set E takes the form $F \cup Z$ where F is an F_{σ} set and $m(Z)=0$.

A linear transformation L is Lipschitz continuous, i.e., there is a constant M so that

$$
|L(x)-L(y)| \leq M|x-y|
$$

for any points $x, y \in \mathbb{R}^{d}$ (this was proved in class using the Frobenius norm on matrices and the Schwarz inequality).

[^0](3 points) Suppose F is an F_{σ} set. Any F_{σ} set can be written as the countable union of bounded F_{σ} sets by taking $F_{k}=F \cap Q_{k}$ where Q_{k} is a cube of size length k centered at 0 . So, it suffices to show that L maps bounded F_{σ} sets to F_{σ} sets. A bounded F_{σ} set is the countable union of compact sets and, since L is continuous, it maps compact sets to compact sets. Hence $L(F)$ is a countable union of compact sets, hence an F_{σ} set.
(3 points) If Z is a set of measure 0 , then for any $\varepsilon>0$ there is a covering $\left\{Q_{i}\right\}$ of Z by cubes with $\sum_{i=1}^{\infty}\left|Q_{i}\right|<\varepsilon$. By the hint, the image of a cube of side length ℓ under L is contained in a cube \widetilde{Q}_{i} of side length $2 M \ell .{ }^{1}$ This implies that $L(Z)$ is covered by a collection of cubes \widetilde{Q}_{i} with
$$
\sum_{i=1}^{\infty}\left|\widetilde{Q}_{i}\right| \leq(2 M)^{d} \varepsilon
$$

Since $\varepsilon>0$ is arbitrary, we conclude that $m(L(Z))=0$.
(3) (Stein and Shakarchi, page 42, Exercise 16) Suppose that $\left\{E_{k}\right\}$ is a countable family of measurable subsets of \mathbb{R}^{d}, and that

$$
\sum_{k=1}^{\infty} m\left(E_{k}\right)<\infty
$$

Let

$$
\begin{aligned}
E & =\left\{x \in \mathbb{R}^{d}: x \in E_{k} \text { for infinitely many } k\right\} \\
& =\limsup _{k \rightarrow \infty}\left(E_{k}\right)
\end{aligned}
$$

(a) Show that E is measurable.
(b) Prove that $m(E)=0$.
(a) (2 points) We claim that

$$
E=\cap_{n=1}^{\infty} \cup_{k=n}^{\infty} E_{k}
$$

If so, then E is the countable intersection of measurable sets, hence measurable. Suppose first that $x \in E$. For each $n, x \in \cup_{k=n}^{\infty} E_{k}$ since x lies in infinitely many of the E_{k}. It follows that $x \in \cap_{n=1}^{\infty} \cup_{k=n}^{\infty} E_{k}$, so $E \subset \cap_{n=1}^{\infty} \cup_{k=n}^{\infty} E_{k}$. On the other hand, if $x \in \cap_{n=1}^{\infty} \cup_{k=n}^{\infty} E_{k}$, then x lies in $\cup_{k=n}^{\infty} E_{k}$ for every n, and hence x must lie in infinitely many of the E_{k}. This proves the desired equality.
(b) (2 points) Since $\sum_{k=1}^{\infty} m\left(E_{k}\right)$ is finite, for every $\varepsilon>0$ there is an N so that $\sum_{k=N}^{\infty} m\left(E_{k}\right)<\varepsilon$. We now deduce that

$$
m(E) \leq m\left(\cup_{N=1}^{\infty} E_{k}\right)<\varepsilon
$$

so that $m(E)=0$.

[^1]
[^0]: Date: February 6, 2019.

[^1]: ${ }^{1}$ By scaling it suffices to show that the image of a unit cube Q under L is contained in a cube of side $2 M$. By translation we may assume that the sides of Q are the unit vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{d}$, where \mathbf{e}_{j} has a 1 in the j th position and zeros elswhere. We seek a cube centered at 0 which contains all of the vectors $L \mathbf{e}_{i}, i=1, \ldots, d$. But $\left\|L \mathbf{e}_{i}\right\|_{\infty} \leq\left\|L \mathbf{e}_{i}\right\|_{2} \leq M$ so if $L \mathbf{e}_{i}=x_{i}^{j} \mathbf{e}_{j}$ then $\mid x_{i}^{j} \leq M$. Hence $L \mathbf{e}_{i}$ is contained in a cube of side $2 M$.

