MATH 676 PROBLEM SET #2 SOLUTIONS

(1) (Stein and Shakarchi, page 39, Exercise 5, Not graded) Suppose that E is a given set and

$$\mathcal{O}_n = \{ x : d(x, E) < 1/n \}.$$

- (a) Show that if E is compact, then $m(E) = \lim_{n \to \infty} m(\mathcal{O}_n)$.
- (b) Show that the conclusion in (a) may be false if E is closed and unbounded, or if E is open and bounded.
- (a) First, observe that, since E is compact, the set E (and hence all of the sets \mathcal{O}_n) are bounded sets, and hence have finite measure. Next, observe that $\mathcal{O}_{n+1} \subset \mathcal{O}_n$. We claim that $E = \bigcap_{n=1}^{\infty} \mathcal{O}_n$. If so, then $\mathcal{O}_n \searrow E$ and the result follows by the monotonicity property of Lebesgue measure, Corollary 3.3 (ii).

Clearly $E \subset \bigcap_{n=1}^{\infty} \mathcal{O}_n$ so we need to prove the opposite inclusion. If $x \in \bigcap_{n=1}^{\infty} \mathcal{O}_n$, then for each *n* there is an $x_n \in E$ with $d(x_n, x) < 1/n$. Hence *x* is a limit point of *E*. Since *E* is closed, it now follows that $x \in E$.

Notice that we used the fact that E is closed and bounded.

- (b) The set \mathbb{Z}^d consisting of points in \mathbb{R}^d with integer coordinates is unbounded and closed. However, each of the sets \mathcal{O}_n has infinite measure. On the other hand, if \mathcal{C} is the fat Cantor set from homework 1 and $E = [0,1] \setminus \mathcal{C}$. It follows from problem 4, part (b) that $I \subset \mathcal{O}_n$ for any n, so that $\lim_{n\to\infty} m(\mathcal{O}_n) = 1$. But $m(E) = \sum_{k=0}^{\infty} 2^k \ell_k < 1$, so $\lim_{n\to\infty} m(\mathcal{O}_n) > m(E)$ strictly.
- (2) (Stein and Shakarchi, page 39, Exercise 8) Suppose that L is a linear transformation of \mathbb{R}^d . Show that if E is a measurable subset of \mathbb{R}^d , then L(E) is also measurable.

(ii) L takes F_{σ} sets to F_{σ} sets. If so, we can use the fact that any measurable set E takes the form $F \cup Z$ where F is an F_{σ} set and m(Z) = 0.

A linear transformation L is Lipschitz continuous, i.e., there is a constant M so that

$$|L(x) - L(y)| \le M|x - y|$$

for any points $x, y \in \mathbb{R}^d$ (this was proved in class using the Frobenius norm on matrices and the Schwarz inequality).

It suffices to show that:

⁽i) L takes sets of measure zero to sets of measure zero, and

Date: February 6, 2019.

(3 points) Suppose F is an F_{σ} set. Any F_{σ} set can be written as the countable union of bounded F_{σ} sets by taking $F_k = F \cap Q_k$ where Q_k is a cube of size length k centered at 0. So, it suffices to show that L maps bounded F_{σ} sets to F_{σ} sets. A bounded F_{σ} set is the countable union of compact sets and, since L is continuous, it maps compact sets to compact sets. Hence L(F) is a countable union of compact sets, hence an F_{σ} set.

(3 points) If Z is a set of measure 0, then for any $\varepsilon > 0$ there is a covering $\{Q_i\}$ of Z by cubes with $\sum_{i=1}^{\infty} |Q_i| < \varepsilon$. By the hint, the image of a cube of side length ℓ under L is contained in a cube \widetilde{Q}_i of side length $2M\ell$.¹ This implies that L(Z) is covered by a collection of cubes \widetilde{Q}_i with

$$\sum_{i=1}^{\infty} \left| \widetilde{Q}_i \right| \le \left(2M \right)^d \varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, we conclude that m(L(Z)) = 0.

(3) (Stein and Shakarchi, page 42, Exercise 16) Suppose that $\{E_k\}$ is a countable family of measurable subsets of \mathbb{R}^d , and that

$$\sum_{k=1}^{\infty} m(E_k) < \infty.$$

Let

 $E = \left\{ x \in \mathbb{R}^d : x \in E_k \text{ for infinitely many } k \right\}$ $= \limsup_{k \to \infty} (E_k).$

- (a) Show that E is measurable.
- (b) Prove that m(E) = 0.
- (a) (2 points) We claim that

$$E = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k.$$

If so, then E is the countable intersection of measurable sets, hence measurable. Suppose first that $x \in E$. For each $n, x \in \bigcup_{k=n}^{\infty} E_k$ since x lies in infinitely many of the E_k . It follows that $x \in \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k$, so $E \subset \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k$. On the other hand, if $x \in \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k$, then x lies in $\bigcup_{k=n}^{\infty} E_k$ for every n, and hence x must lie in infinitely many of the E_k . This proves the desired equality.

(b) (2 points) Since $\sum_{k=1}^{\infty} m(E_k)$ is finite, for every $\varepsilon > 0$ there is an N so that $\sum_{k=N}^{\infty} m(E_k) < \varepsilon$. We now deduce that

$$m(E) \le m\left(\cup_{N=1}^{\infty} E_k\right) < \varepsilon$$

so that
$$m(E) = 0$$
.

¹By scaling it suffices to show that the image of a unit cube Q under L is contained in a cube of side 2M. By translation we may assume that the sides of Q are the unit vectors $\mathbf{e}_1, \ldots, \mathbf{e}_d$, where \mathbf{e}_j has a 1 in the *j*th position and zeros elswhere. We seek a cube centered at 0 which contains all of the vectors $L\mathbf{e}_i$, $i = 1, \ldots, d$. But $||L\mathbf{e}_i||_{\infty} \leq ||L\mathbf{e}_i||_2 \leq M$ so if $L\mathbf{e}_i = x_i^j \mathbf{e}_j$ then $|x_i^j \leq M$. Hence $L\mathbf{e}_i$ is contained in a cube of side 2M.