PROBLEM SET \#3 SOLUTIONS

1. (4 points) Stein and Shakarchi, page 42, Exercise 20.
(a) ($\mathbf{2}$ points) The Cantor set \mathcal{C} consists of all those x with ternary expansions of the form

$$
x=\sum_{n=1}^{\infty} \frac{a_{n}}{2^{n}}, \quad a_{n} \in\{0,2\}
$$

so that $\mathcal{C} / 2$ consists of all those x with ternrary expansions of the same form but with $a_{n} \in\{0,1\}$. It is clear that any $x \in[0,1]$ may be written as a sum of $x \in \mathcal{C}$ and $y \in \mathcal{C} / 2$, so $\mathcal{C}+\mathcal{C} / 2 \supset[0,1]$ even though $m(\mathcal{C})=0$ and $m(\mathcal{C} / 2)=0$ since any cover of \mathcal{C} by open cubes can be recaled to give a cover of $\mathcal{C} / 2$ having half the measure.
(b) (2 points) If $A=I \times\{0\} \subset \mathbb{R}^{2}$ and $B=\{0\} \times I \subset \mathbb{R}^{2}$, then $A+B=I \times I$, the unit square in \mathbb{R}^{2}. It is easy to see that $m(I \times\{0\})=m(\{0\} \times I)=0($ cover I with small intervals and then extend these to small cubes) but clearly $m(I \times I)=1$.
2. (6 points) Stein and Shakarchi, page 43, Exercise 23.

Suppose that $f(x, y)$ is a function on \mathbb{R}^{2} and is separately continuous in x and y. We wish to show that f is also measurable. It suffices to exhibit a sequence of measurable functions that converges to f since, by Property 3 of measurable functions, the pointwise limit of a sequence of measurable functions is measurable. For each positive integer n, define a piecewise linear function f_{n} as follows. For each integer ℓ and $x \in[\ell / n,(\ell+1) / n)$ define

$$
f_{n}(x, y)=f(\ell / n, y)+(n x-\ell) \cdot[f((\ell+1) / n, y)-f(\ell / n, y)] .
$$

Since f_{n} is piecewise linear in x and each of the functions $y \mapsto$ $f(\ell / n, y)$ and $y \mapsto f((\ell+1) / n, y)$ is a continuous function of y, it follows that $f_{n}(x, y)$ is jointly continuous in x and y, hence measurable. It remains to show that $f_{n}(x, y) \rightarrow f(x, y)$ as $x \rightarrow \infty$. If $x \in[\ell / n,(\ell+1) / n]$ then

$$
\begin{aligned}
f_{n}(x, y)-f(x, y)= & (1-\theta)[f(\ell / n, y)-f(x, y)] \\
& +\theta[f((\ell+1) / n, y)-f(x, y)]
\end{aligned}
$$

where $\theta=n x-\ell \in[0,1]$. Since $x \mapsto f(x, y)$ is continuous for each fixed y, given $\varepsilon>0$ we can find $\delta>0$ so that $\left|f\left(x^{\prime}, y\right)-f(x, y)\right|<\varepsilon$ whenever $\left|x-x^{\prime}\right|<\delta$. Given such a δ choose n so that $n<\delta$. It then follows that $\left|f_{n}(x, y)-f(x, y)\right|<\varepsilon$ for such n, showing that $f_{n}(x, y) \rightarrow f(x, y)$.
3. (Not graded) Stein and Shakarchi, page 43, Exercise 26.

Suppose that A and B are measurable sets of finite measure, that $A \subset E \subset B$, and that $m(A)=m(B)$. We claim that E is measurable. From the containment $E-A \subset B-A$ we see that the set $E-A$ is contained in a set of measure zero since $m(B)=m(A)+m(B-A)$. It follows that $Z=E-A$ has outer measure zero, hence is a measurable set of measure zero. Hence, $E=A \cup Z$, the union of measurable sets, is also measurable.

