
PROBLEM SET #4 SOLUTIONS

1. (Not graded) Stein and Shakarchi, page 44, Exercise 28.

Suppose thatO is an open set containing E withm∗(E) ≥ αm∗(O)
for some α ∈ (0, 1). We can write O = ∪∞n=1In where the In
are disjoint open intervals by Theorem 1.3 in the text. We claim
that m∗(E ∩ I) ≥ αm∗(I) for at least one of the In. If not, then
m∗(E ∩ In) < αm∗(In) for every n. We then have

m∗(E) = m∗ (∪∞n=1E ∩ In)(1)

≤
∞∑
n=1

m∗(E ∩ In)

≤
∞∑
n=1

αm∗(In)

= αm∗(O),

a contradiction.
It’s worth commenting on why the last step in (1) is correct. If
O = ∪In then m∗(O) ≤

∑∞
n=1m∗(In) by countable subbadditivity

of outer measure. On the other hand, if {In}kn=1 is any finite set
of disjoint open intervals, the finite collection {Jn}kn=1, where Jn
is a disjoint collection of closed intervals with Jn ⊂ In, satisfies
m∗(∪kn=1Jn) =

∑k
n=1m∗(Jn) ≤ m∗

(
∪kn=1In

)
. We can approximate

m∗(In) by m∗(Jn) with arbitrary precision and conclude that

m∗
(
∪kn=1In

)
=

j∑
n=1

m∗(In).

It follows that
k∑

n=1

m∗(In) ≤ m∗(O)

for any k, Hence, finally (!), m∗(O) =
∑∞

n=1m∗(In).

2. (4 points) Stein and Shakarchi, page 44, Exercise 29

Suppose E is a measurable subset of R having nonzero finite mea-
sure and consider the difference set

F = {z ∈ R : z = x− y for some x, y ∈ E} .
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Following the hint, there is an interval I so thatm(E0) > (9/10)m(I)
where E0 = E ∩ I. Suppose that the difference set F0 of E0 (which
is contained in F ) contains no open interval. Since 0 lies in the
difference set, then there is some number a > 0 so that F0 \ {0} ∩
(−2a, 2a) = 0. Te sets E0 and E0 + a are disjoint since any x in the
intersection takes the form y + a for another element of E0, which
is impossible. We then compute, on the one hand

m (E0 ∪ E0 + a) = 2m(E0).

But, on the other hand, E0 ∪ (E0 + a) ⊂ I ∪ (I + a), so that

m(E0 ∪ E0 + a) ≤ m(I ∪ (I + 2a)) < (1 + ε)m(I)

which contradicts the fact that m(E0) > (9/10)m(I).

3. (Not graded) Stein and Shakarchi, page 45, Exercise 37.

Remember this problem from our first in-class exercise?

Let

Γn = {(x, f(x)) : n− 1 ≤ x < n}.
It suffices to prove that m∗(Γn) = 0 for all n since outer measure
is countably subadditive. By translation invariance, it suffices to
consider

Γ1 = {(x, f(x)) : 0 ≤ x < 1}.
Since this set is contained in

Γ′1 = {(x, f(x)) : 0 ≤ x ≤ 1},

it will be enough to show that Γ′1 has measure 0. Since f is continu-
ous on [0, 1], it is uniformly continuous. Thus given any ε > 0 there
is a δ > 0 so that |f(x)− f(y)| < ε whenever |x− y| < δ. Fix ε > 0
and choose N so that 1/N < δ. Dividing [0, 1] into intervals of size
1/N we can enclose each set

{(x, f(x)) : (j − 1)/N ≤ x < j/N}

in a rectangle of width 2/N and height ε. The total area of these
N rectangles is 2ε. It follows that m∗(Γ

′
1) < 2ε and, since ε > 0 is

arbitrary, m∗(Γ
′
1) = 0.

4. (6 points) Stein and Shakarchi, page 47, Problem 4.

Let f be abounded function on a compact interval J , let

I(c, r) = (c− r, c+ r),
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and define

osc(f, c, r) = sup{|f(x)− f(y)| : x, y ∈ J ∩ I(c, r)}
osc(f, c) = lim

r→0
osc(f, c, r)

where the second definition makes sense because osc(f, c, r) from
above and below, and osc(f, c, r1) ≤ osc(f, c, r2) if 0 < r1 < r > 2.
The function f is continuous at c if and only if osc(f, c) = 0.1 We
will prove:

Theorem A bounded function f on a compact interval J is Rie-
mann integrable if and only if its set of discontinuities has measure
zero.

(a) (2 points) For any ε > 0 the set of points in J so that osc(f, c) ≥
ε is compact.

Let Aε = {c ∈ J : osc(f, c) ≥ ε}. Since J is bounded it suffices
to show that Aε is closed, or equivalently to show that Ac

ε is
open. If c ∈ Ac

ε, then either c ∈ J c (which, as the complement
of a compact set, is open), or c ∈ J but osc(f, c) < ε. In the
first case, c is an interior point of J c

ε , hence an interior point of
Ac

ε. In the second case, there is a δ > 0 so that osc(f, c, δ) < ε.
Since osc(f, c, r) is monotone nonincreasing in r, it follows that
for any c′ with |c − c′| < δ/4, osc(f, c′) < ε, so again c is an
interior point of Ac

ε.

(b) (2 points) Suppose that the set of discontinuities A of f has
measure zero and that |f(x)| ≤ M for all x ∈ J . Consider the
sets A1/n where Aε was defined above. The set A1/n is compact
and has measure zero since A1/n ⊂ A. Fix n. Given any ε >
0 (unrelated to n) we can cover A1/n by a countable union of
intervals with total length ≤ ε. By compactness we can extract
a finite subcover, say {In}Nn=1, with

∑N
n=1 |In| < ε, and close

the intervals to obtain a set of closed intervals containing A1/n

which we may assume are disjoint. Let B = ∪Ni=1In. On J \ B
we have osc(f, c) < 1/n, so for each c ∈ J \ B there is an r > 0
so that osc(f, c, r) < 2/n. Thus we can partition J \ B into
intervals [xj−1, xj] with Mj −mj < 2/n, where Mj and mj are

1Students are allowed to assume this, but here’s a proof. If osc(f, c) = 0, given
any ε > 0 there is a δ > 0 so that for any x, y ∈ I(c, δ), |f(x)−f(c)| ≤ osc(f, c, r) <
ε. On the other hand, if f is continuous at c then for any ε > 0 there is a δ > 0
so that |f(x)− f(c)| < ε if |x− c| < δ. Estimating |f(x)− f(y)| ≤ |f(x)− f(c)|+
|f(y)−f(c)| we see that osc(f, c, δ) < 2ε, which shows that osc(f, c, r)→ 0 as r → 0
since osc(f, c, r) is monotone decreasing.
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the maximum and minimum values of f on [xj−1, xj]. Let P be
a partition consisting of the {I i} and the small intervals in J \B.
We may estimate

U(f, P )− L(f, P ) ≤
∑
j

(Mj −mj)(xj+1 − xj) + 2M
N∑
i=1

|Ii|

≤ (2/n) + 2Mε

Choosing n large enough we can find a partition P so that
U(f, P ) − L(f, P ) < 4Mε and, since ε > 0 is arbitrary, we
conclude that f is Riemann integrable. This proves the first
direction.

(c) (2 points) Suppose that f is Riemann integrable. We will use
this fact to estimate the measure of the discontinuity set. Since
f is integrable, there is a partition P so that U(f, P )−L(f, P ) <
ε/n. Denote by Ij the jth interval in this partition. We may
estimate

1

n
m(An) ≤

∑
j:Ij∩E 6=∅

1

n
|Ij|

≤
∑

j:Ij∩E 6=∅

(Mj −mj)|Ij|

≤ U(f, P )− L(f, P )

< ε/n

and conclude that m(A1/n < ε for any ε > 0. Since ε > 0 is
arbitrary, we conclude that m(A1/n) = 0 for all n. Since A, the
set of discontinuities of f , is given by A = ∪∞n=1A1/n, it follows
that m(A) = 0.


