PROBLEM SET #4 SOLUTIONS

1. (Not graded) Stein and Shakarchi, page 44, Exercise 28.

Suppose that \mathcal{O} is an open set containing E with $m_*(E) \geq \alpha m_*(\mathcal{O})$ for some $\alpha \in (0,1)$. We can write $\mathcal{O} = \bigcup_{n=1}^{\infty} I_n$ where the I_n are disjoint open intervals by Theorem 1.3 in the text. We claim that $m_*(E \cap I) \geq \alpha m_*(I)$ for at least one of the I_n . If not, then $m_*(E \cap I_n) < \alpha m_*(I_n)$ for every n. We then have

(1)

$$m_{*}(E) = m_{*} (\bigcup_{n=1}^{\infty} E \cap I_{n})$$

$$\leq \sum_{n=1}^{\infty} m_{*}(E \cap I_{n})$$

$$\leq \sum_{n=1}^{\infty} \alpha m_{*}(I_{n})$$

$$= \alpha m_{*}(\mathcal{O}),$$

a contradiction.

It's worth commenting on why the last step in (1) is correct. If $\mathcal{O} = \bigcup I_n$ then $m_*(\mathcal{O}) \leq \sum_{n=1}^{\infty} m_*(I_n)$ by countable subbadditivity of outer measure. On the other hand, if $\{I_n\}_{n=1}^k$ is any finite set of disjoint open intervals, the finite collection $\{J_n\}_{n=1}^k$, where J_n is a disjoint collection of closed intervals with $J_n \subset I_n$, satisfies $m_*(\bigcup_{n=1}^k J_n) = \sum_{n=1}^k m_*(J_n) \leq m_*(\bigcup_{n=1}^k I_n)$. We can approximate $m_*(I_n)$ by $m_*(J_n)$ with arbitrary precision and conclude that

$$m_*\left(\bigcup_{n=1}^k I_n\right) = \sum_{n=1}^j m_*(I_n).$$

It follows that

$$\sum_{n=1}^{k} m_*(I_n) \le m_*(\mathcal{O})$$

for any k, Hence, finally (!), $m_*(\mathcal{O}) = \sum_{n=1}^{\infty} m_*(I_n)$.

2. (4 points) Stein and Shakarchi, page 44, Exercise 29

Suppose E is a measurable subset of \mathbb{R} having nonzero finite measure and consider the difference set

$$F = \{z \in R : z = x - y \text{ for some } x, y \in E\}.$$

Following the hint, there is an interval I so that $m(E_0) > (9/10)m(I)$ where $E_0 = E \cap I$. Suppose that the difference set F_0 of E_0 (which is contained in F) contains no open interval. Since 0 lies in the difference set, then there is some number a > 0 so that $F_0 \setminus \{0\} \cap$ (-2a, 2a) = 0. Te sets E_0 and $E_0 + a$ are disjoint since any x in the intersection takes the form y + a for another element of E_0 , which is impossible. We then compute, on the one hand

$$m(E_0 \cup E_0 + a) = 2m(E_0)$$

But, on the other hand, $E_0 \cup (E_0 + a) \subset I \cup (I + a)$, so that

$$m(E_0 \cup E_0 + a) \le m(I \cup (I + 2a)) < (1 + \varepsilon)m(I)$$

which contradicts the fact that $m(E_0) > (9/10)m(I)$.

3. (Not graded) Stein and Shakarchi, page 45, Exercise 37.

Remember this problem from our first in-class exercise? Let

$$\Gamma_n = \{ (x, f(x)) : n - 1 \le x < n \}.$$

It suffices to prove that $m_*(\Gamma_n) = 0$ for all *n* since outer measure is countably subadditive. By translation invariance, it suffices to consider

$$\Gamma_1 = \{ (x, f(x)) : 0 \le x < 1 \}.$$

Since this set is contained in

$$\Gamma_1' = \{ (x, f(x)) : 0 \le x \le 1 \},\$$

it will be enough to show that Γ'_1 has measure 0. Since f is continuous on [0, 1], it is uniformly continuous. Thus given any $\varepsilon > 0$ there is a $\delta > 0$ so that $|f(x) - f(y)| < \varepsilon$ whenever $|x - y| < \delta$. Fix $\varepsilon > 0$ and choose N so that $1/N < \delta$. Dividing [0, 1] into intervals of size 1/N we can enclose each set

$$\{(x, f(x)) : (j-1)/N \le x < j/N\}$$

in a rectangle of width 2/N and height ε . The total area of these N rectangles is 2ε . It follows that $m_*(\Gamma'_1) < 2\varepsilon$ and, since $\varepsilon > 0$ is arbitrary, $m_*(\Gamma'_1) = 0$.

4. (6 points) Stein and Shakarchi, page 47, Problem 4.

Let f be abounded function on a compact interval J, let

$$I(c,r) = (c-r, c+r),$$

and define

$$\operatorname{osc}(f, c, r) = \sup\{|f(x) - f(y)| : x, y \in J \cap I(c, r)\}$$
$$\operatorname{osc}(f, c) = \lim_{x \to 0} \operatorname{osc}(f, c, r)$$

where the second definition makes sense because $\operatorname{osc}(f, c, r)$ from above and below, and $\operatorname{osc}(f, c, r_1) \leq \operatorname{osc}(f, c, r_2)$ if $0 < r_1 < r > 2$. The function f is continuous at c if and only if $\operatorname{osc}(f, c) = 0$.¹ We will prove:

Theorem A bounded function f on a compact interval J is Riemann integrable if and only if its set of discontinuities has measure zero.

(a) (2 points) For any $\varepsilon > 0$ the set of points in J so that $\operatorname{osc}(f, c) \ge \varepsilon$ is compact.

Let $A_{\varepsilon} = \{c \in J : \operatorname{osc}(f, c) \geq \varepsilon\}$. Since J is bounded it suffices to show that A_{ε} is closed, or equivalently to show that A_{ε}^{c} is open. If $c \in A_{\varepsilon}^{c}$, then either $c \in J^{c}$ (which, as the complement of a compact set, is open), or $c \in J$ but $\operatorname{osc}(f, c) < \varepsilon$. In the first case, c is an interior point of J_{ε}^{c} , hence an interior point of A_{ε}^{c} . In the second case, there is a $\delta > 0$ so that $\operatorname{osc}(f, c, \delta) < \varepsilon$. Since $\operatorname{osc}(f, c, r)$ is monotone nonincreasing in r, it follows that for any c' with $|c - c'| < \delta/4$, $\operatorname{osc}(f, c') < \varepsilon$, so again c is an interior point of A_{ε}^{c} .

(b) (2 points) Suppose that the set of discontinuities A of f has measure zero and that $|f(x)| \leq M$ for all $x \in J$. Consider the sets $A_{1/n}$ where A_{ε} was defined above. The set $A_{1/n}$ is compact and has measure zero since $A_{1/n} \subset A$. Fix n. Given any $\varepsilon >$ 0 (unrelated to n) we can cover $A_{1/n}$ by a countable union of intervals with total length $\leq \varepsilon$. By compactness we can extract a finite subcover, say $\{I_n\}_{n=1}^N$, with $\sum_{n=1}^N |I_n| < \varepsilon$, and close the intervals to obtain a set of closed intervals containing $A_{1/n}$ which we may assume are disjoint. Let $B = \bigcup_{i=1}^N \overline{I_n}$. On $J \setminus B$ we have $\operatorname{osc}(f, c, r) < 1/n$, so for each $c \in J \setminus B$ there is an r > 0so that $\operatorname{osc}(f, c, r) < 2/n$. Thus we can partition $J \setminus B$ into intervals $[x_{j-1}, x_j]$ with $M_j - m_j < 2/n$, where M_j and m_j are

¹Students are allowed to assume this, but here's a proof. If $\operatorname{osc}(f,c) = 0$, given any $\varepsilon > 0$ there is a $\delta > 0$ so that for any $x, y \in I(c, \delta)$, $|f(x) - f(c)| \leq \operatorname{osc}(f, c, r) < \varepsilon$. On the other hand, if f is continuous at c then for any $\varepsilon > 0$ there is a $\delta > 0$ so that $|f(x) - f(c)| < \varepsilon$ if $|x - c| < \delta$. Estimating $|f(x) - f(y)| \leq |f(x) - f(c)| + |f(y) - f(c)|$ we see that $\operatorname{osc}(f, c, \delta) < 2\varepsilon$, which shows that $\operatorname{osc}(f, c, r) \to 0$ as $r \to 0$ since $\operatorname{osc}(f, c, r)$ is monotone decreasing.

the maximum and minimum values of f on $[x_{j-1}, x_j]$. Let P be a partition consisting of the $\{\overline{I}_i\}$ and the small intervals in $J \setminus B$. We may estimate

$$U(f, P) - L(f, P) \le \sum_{j} (M_j - m_j)(x_{j+1} - x_j) + 2M \sum_{i=1}^{N} |I_i| \le (2/n) + 2M\varepsilon$$

Choosing n large enough we can find a partition P so that $U(f, P) - L(f, P) < 4M\varepsilon$ and, since $\varepsilon > 0$ is arbitrary, we conclude that f is Riemann integrable. This proves the first direction.

(c) (2 points) Suppose that f is Riemann integrable. We will use this fact to estimate the measure of the discontinuity set. Since f is integrable, there is a partition P so that $U(f, P) - L(f, P) < \varepsilon/n$. Denote by I_j the *j*th interval in this partition. We may estimate

$$\frac{1}{n}m(A_n) \leq \sum_{j:I_j \cap E \neq \emptyset} \frac{1}{n}|I_j|$$
$$\leq \sum_{j:I_j \cap E \neq \emptyset} (M_j - m_j)|I_j|$$
$$\leq U(f, P) - L(f, P)$$
$$< \varepsilon/n$$

and conclude that $m(A_{1/n} < \varepsilon \text{ for any } \varepsilon > 0$. Since $\varepsilon > 0$ is arbitrary, we conclude that $m(A_{1/n}) = 0$ for all n. Since A, the set of discontinuities of f, is given by $A = \bigcup_{n=1}^{\infty} A_{1/n}$, it follows that m(A) = 0.

4