PROBLEM SET #4 SOLUTIONS

1. (Not graded) Stein and Shakarchi, page 44, Exercise 28.

Suppose that O is an open set containing £ with m.(E) > am.(O)
for some a € (0,1). We can write O = U2 I, where the I,
are disjoint open intervals by Theorem 1.3 in the text. We claim
that m.(E N1I) > am,.(I) for at least one of the I,,. If not, then
m«(E N 1,) < am,(l,) for every n. We then have

(1) m(E) = m. (UL EN 1)

< im*(E NI,

n=1

< Z am, (I,
n=1
= am.(0),

a contradiction.

It’s worth commenting on why the last step in (1) is correct. If
O = UI,, then m,(O) < > > m.(I,) by countable subbadditivity
of outer measure. On the other hand, if {I,}*_, is any finite set
of disjoint open intervals, the finite collection {J,}*_,, where J,
is a disjoint collection of closed intervals with .J, C I,, satisfies

m.(UE_ J,) = Zizl my(J,) < m (UE_ 1,). We can approximate
m«(I,) by m.(J,) with arbitrary precision and conclude that

J
= Zm*(]
n=1
It follows that
Zm* ) < m,(O)
for any k&, Hence, ﬁnally (), m.(0) = >0 m.(I,).

2. (4 points) Stein and Shakarchi, page 44, Exercise 29

Suppose E is a measurable subset of R having nonzero finite mea-
sure and consider the difference set

F={z2€R:z=ux—yforsome z,y € E}.
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Following the hint, there is an interval I so that m(Ey) > (9/10)m(I)
where Ey = F N 1. Suppose that the difference set Fy of Ey (which
is contained in F') contains no open interval. Since 0 lies in the
difference set, then there is some number a > 0 so that Fy \ {0} N
(—2a,2a) = 0. Te sets Ey and Ej + a are disjoint since any x in the
intersection takes the form y + a for another element of Ej, which
is impossible. We then compute, on the one hand

m (Eo U Ey + a) = 2m(Ey).
But, on the other hand, Ey U (Ey+a) C I U (I + a), so that
m(EgUEy+a) <m(IU(I+2a)) < (1+e)m(I)
which contradicts the fact that m(Ey) > (9/10)m([I).

3. (Not graded) Stein and Shakarchi, page 45, Exercise 37.

Remember this problem from our first in-class exercise?
Let
Lp={(z,f(z)):n—1<z <n}.
It suffices to prove that m.(I';,) = 0 for all n since outer measure

is countably subadditive. By translation invariance, it suffices to
consider

Iy ={(z, f(x)): 0 <z <1}
Since this set is contained in
I ={(z, f(z)): 0 <2 < 1},

it will be enough to show that I} has measure 0. Since f is continu-
ous on [0, 1], it is uniformly continuous. Thus given any & > 0 there
isa d > 0so that |f(x) — f(y)| < € whenever |z —y| <. Fixe >0
and choose N so that 1/N < 4. Dividing [0, 1] into intervals of size
1/N we can enclose each set

{(z, f(2)): G = 1)/N <2 <j/N}
in a rectangle of width 2/N and height . The total area of these
N rectangles is 2¢. It follows that m.(I"}) < 2e¢ and, since € > 0 is
arbitrary, m.(I"}) = 0.
4. (6 points) Stein and Shakarchi, page 47, Problem 4.

Let f be abounded function on a compact interval J, let

I(e,r)=(c—r,c+7),
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and define
osc(f,c,r) =sup{|f(x) — f(y)| : z,y € TN I(c,7)}

ose(f,¢) = limose(f, ¢, )

where the second definition makes sense because osc(f,c,r) from
above and below, and osc(f,c,m) < osc(f,c,rm2) if 0 <7y <r > 2.
The function f is continuous at c if and only if osc(f,c) = 0. We
will prove:

Theorem A bounded function f on a compact interval J is Rie-
mann integrable if and only if its set of discontinuities has measure
zero.

(a) (2 points) For any € > 0 the set of points in J so that osc(f, c) >
€ is compact.

Let A. = {c € J :o0sc(f,c) > e}. Since J is bounded it suffices
to show that A, is closed, or equivalently to show that A¢ is
open. If ¢ € AS, then either ¢ € J¢ (which, as the complement
of a compact set, is open), or ¢ € J but osc(f,c) < €. In the
first case, c is an interior point of J¢, hence an interior point of
A¢. In the second case, there is a 6 > 0 so that osc(f,¢,d) < e.
Since osc(f, ¢, r) is monotone nonincreasing in r, it follows that
for any ¢ with |¢c — | < §/4, osc(f,d) < €, so again ¢ is an
interior point of A¢.

(b) (2 points) Suppose that the set of discontinuities A of f has
measure zero and that |f(z)| < M for all € J. Consider the
sets A/, where A, was defined above. The set A/, is compact
and has measure zero since A,,, C A. Fix n. Given any ¢ >
0 (unrelated to n) we can cover A;,, by a countable union of
intervals with total length < e. By compactness we can extract
a finite subcover, say {I,}_,, with SV |I,| < ¢, and close
the intervals to obtain a set of closed intervals containing A, ,
which we may assume are disjoint. Let B = UYI,,. On J\ B
we have osc(f,¢) < 1/n, so for each ¢ € J\ B there is an r > 0
so that osc(f,c,7) < 2/n. Thus we can partition J \ B into
intervals [z;_1,2;] with M; —m; < 2/n, where M; and m; are

IStudents are allowed to assume this, but here’s a proof. If osc(f,c) =0, given
any € > 0 there is a ¢ > 0 so that for any x,y € I(c,9), | f(x)— f(c)] < osc(f, e, 7) <
€. On the other hand, if f is continuous at ¢ then for any ¢ > 0 there isa § > 0
so that |f(z) — f(c)| < e if |z — ¢| < §. Estimating |f(z) — f(y)| < |f(z) — f(c)| +
|f(y)— f(c)| we see that osc(f, ¢, d) < 2e, which shows that osc(f,c,r) — 0asr — 0
since osc(f, ¢, r) is monotone decreasing.
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the maximum and minimum values of f on [z;_1,z;]. Let P be
a partition consisting of the {/;} and the small intervals in J\ B.
We may estimate

U(f. P) = L(f,P) < ) (M; —my)(wji1 — +2MZII|
J
< (2/n) +2Me
Choosing n large enough we can find a partition P so that
U(f,P) — L(f,P) < 4Me and, since ¢ > 0 is arbitrary, we
conclude that f is Riemann integrable. This proves the first
direction.

(c) (2 points) Suppose that f is Riemann integrable. We will use
this fact to estimate the measure of the discontinuity set. Since
f is integrable, there is a partition P so that U(f, P)—L(f, P) <
e/n. Denote by I; the jth interval in this partition. We may
estimate

1 1
—m(4,) < Z Euj’

n
J:LNE#D
< Z —m;)| 1]
J:I;NE#)
<e/n

and conclude that m(A,;,, < € for any ¢ > 0. Since € > 0 is
arbitrary, we conclude that m(A;,) = 0 for all n. Since A, the
set of discontinuities of f, is given by A = Uj2 Ay, it follows
that m(A) = 0.



