PROBLEM SET \#4 SOLUTIONS

1. (Not graded) Stein and Shakarchi, page 44, Exercise 28.

Suppose that \mathcal{O} is an open set containing E with $m_{*}(E) \geq \alpha m_{*}(\mathcal{O})$ for some $\alpha \in(0,1)$. We can write $\mathcal{O}=\cup_{n=1}^{\infty} I_{n}$ where the I_{n} are disjoint open intervals by Theorem 1.3 in the text. We claim that $m_{*}(E \cap I) \geq \alpha m_{*}(I)$ for at least one of the I_{n}. If not, then $m_{*}\left(E \cap I_{n}\right)<\alpha m_{*}\left(I_{n}\right)$ for every n. We then have

$$
\begin{align*}
m_{*}(E) & =m_{*}\left(\cup_{n=1}^{\infty} E \cap I_{n}\right) \tag{1}\\
& \leq \sum_{n=1}^{\infty} m_{*}\left(E \cap I_{n}\right) \\
& \leq \sum_{n=1}^{\infty} \alpha m_{*}\left(I_{n}\right) \\
& =\alpha m_{*}(\mathcal{O}),
\end{align*}
$$

a contradiction.
It's worth commenting on why the last step in (1) is correct. If $\mathcal{O}=\cup I_{n}$ then $m_{*}(\mathcal{O}) \leq \sum_{n=1}^{\infty} m_{*}\left(I_{n}\right)$ by countable subbadditivity of outer measure. On the other hand, if $\left\{I_{n}\right\}_{n=1}^{k}$ is any finite set of disjoint open intervals, the finite collection $\left\{J_{n}\right\}_{n=1}^{k}$, where J_{n} is a disjoint collection of closed intervals with $J_{n} \subset I_{n}$, satisfies $m_{*}\left(\cup_{n=1}^{k} J_{n}\right)=\sum_{n=1}^{k} m_{*}\left(J_{n}\right) \leq m_{*}\left(\cup_{n=1}^{k} I_{n}\right)$. We can approximate $m_{*}\left(I_{n}\right)$ by $m_{*}\left(J_{n}\right)$ with arbitrary precision and conclude that

$$
m_{*}\left(\cup_{n=1}^{k} I_{n}\right)=\sum_{n=1}^{j} m_{*}\left(I_{n}\right) .
$$

It follows that

$$
\sum_{n=1}^{k} m_{*}\left(I_{n}\right) \leq m_{*}(\mathcal{O})
$$

for any k, Hence, finally (!), $m_{*}(\mathcal{O})=\sum_{n=1}^{\infty} m_{*}\left(I_{n}\right)$.
2. (4 points) Stein and Shakarchi, page 44, Exercise 29

Suppose E is a measurable subset of \mathbb{R} having nonzero finite measure and consider the difference set

$$
F=\{z \in R: z=x-y \text { for some } x, y \in E\} .
$$

Following the hint, there is an interval I so that $m\left(E_{0}\right)>(9 / 10) m(I)$ where $E_{0}=E \cap I$. Suppose that the difference set F_{0} of E_{0} (which is contained in F) contains no open interval. Since 0 lies in the difference set, then there is some number $a>0$ so that $F_{0} \backslash\{0\} \cap$ $(-2 a, 2 a)=0$. Te sets E_{0} and $E_{0}+a$ are disjoint since any x in the intersection takes the form $y+a$ for another element of E_{0}, which is impossible. We then compute, on the one hand

$$
m\left(E_{0} \cup E_{0}+a\right)=2 m\left(E_{0}\right) .
$$

But, on the other hand, $E_{0} \cup\left(E_{0}+a\right) \subset I \cup(I+a)$, so that

$$
m\left(E_{0} \cup E_{0}+a\right) \leq m(I \cup(I+2 a))<(1+\varepsilon) m(I)
$$

which contradicts the fact that $m\left(E_{0}\right)>(9 / 10) m(I)$.
3. (Not graded) Stein and Shakarchi, page 45, Exercise 37.

Remember this problem from our first in-class exercise?
Let

$$
\Gamma_{n}=\{(x, f(x)): n-1 \leq x<n\} .
$$

It suffices to prove that $m_{*}\left(\Gamma_{n}\right)=0$ for all n since outer measure is countably subadditive. By translation invariance, it suffices to consider

$$
\Gamma_{1}=\{(x, f(x)): 0 \leq x<1\} .
$$

Since this set is contained in

$$
\Gamma_{1}^{\prime}=\{(x, f(x)): 0 \leq x \leq 1\}
$$

it will be enough to show that Γ_{1}^{\prime} has measure 0 . Since f is continuous on $[0,1]$, it is uniformly continuous. Thus given any $\varepsilon>0$ there is a $\delta>0$ so that $|f(x)-f(y)|<\varepsilon$ whenever $|x-y|<\delta$. Fix $\varepsilon>0$ and choose N so that $1 / N<\delta$. Dividing [0,1] into intervals of size $1 / N$ we can enclose each set

$$
\{(x, f(x)):(j-1) / N \leq x<j / N\}
$$

in a rectangle of width $2 / N$ and height ε. The total area of these N rectangles is 2ε. It follows that $m_{*}\left(\Gamma_{1}^{\prime}\right)<2 \varepsilon$ and, since $\varepsilon>0$ is arbitrary, $m_{*}\left(\Gamma_{1}^{\prime}\right)=0$.
4. (6 points) Stein and Shakarchi, page 47, Problem 4.

Let f be abounded function on a compact interval J, let

$$
I(c, r)=(c-r, c+r),
$$

and define

$$
\begin{aligned}
\operatorname{osc}(f, c, r) & =\sup \{|f(x)-f(y)|: x, y \in J \cap I(c, r)\} \\
\operatorname{osc}(f, c) & =\lim _{r \rightarrow 0} \operatorname{osc}(f, c, r)
\end{aligned}
$$

where the second definition makes sense because $\operatorname{osc}(f, c, r)$ from above and below, and $\operatorname{osc}\left(f, c, r_{1}\right) \leq \operatorname{osc}\left(f, c, r_{2}\right)$ if $0<r_{1}<r>2$. The function f is continuous at c if and only if $\operatorname{osc}(f, c)=0 .{ }^{1}$ We will prove:

Theorem A bounded function f on a compact interval J is Riemann integrable if and only if its set of discontinuities has measure zero.
(a) (2 points) For any $\varepsilon>0$ the set of points in J so that $\operatorname{osc}(f, c) \geq$ ε is compact.
Let $A_{\varepsilon}=\{c \in J: \operatorname{osc}(f, c) \geq \varepsilon\}$. Since J is bounded it suffices to show that A_{ε} is closed, or equivalently to show that A_{ε}^{c} is open. If $c \in A_{\varepsilon}^{c}$, then either $c \in J^{c}$ (which, as the complement of a compact set, is open), or $c \in J$ but $\operatorname{osc}(f, c)<\varepsilon$. In the first case, c is an interior point of J_{ε}^{c}, hence an interior point of A_{ε}^{c}. In the second case, there is a $\delta>0$ so that $\operatorname{osc}(f, c, \delta)<\varepsilon$. Since $\operatorname{osc}(f, c, r)$ is monotone nonincreasing in r, it follows that for any c^{\prime} with $\left|c-c^{\prime}\right|<\delta / 4, \operatorname{osc}\left(f, c^{\prime}\right)<\varepsilon$, so again c is an interior point of A_{ε}^{c}.
(b) (2 points) Suppose that the set of discontinuities A of f has measure zero and that $|f(x)| \leq M$ for all $x \in J$. Consider the sets $A_{1 / n}$ where A_{ε} was defined above. The set $A_{1 / n}$ is compact and has measure zero since $A_{1 / n} \subset A$. Fix n. Given any $\varepsilon>$ 0 (unrelated to n) we can cover $A_{1 / n}$ by a countable union of intervals with total length $\leq \varepsilon$. By compactness we can extract a finite subcover, say $\left\{I_{n}\right\}_{n=1}^{N}$, with $\sum_{n=1}^{N}\left|I_{n}\right|<\varepsilon$, and close the intervals to obtain a set of closed intervals containing $A_{1 / n}$ which we may assume are disjoint. Let $B=\cup_{i=1}^{N} \overline{I_{n}}$. On $J \backslash B$ we have $\operatorname{osc}(f, c)<1 / n$, so for each $c \in J \backslash B$ there is an $r>0$ so that $\operatorname{osc}(f, c, r)<2 / n$. Thus we can partition $J \backslash B$ into intervals $\left[x_{j-1}, x_{j}\right]$ with $M_{j}-m_{j}<2 / n$, where M_{j} and m_{j} are

[^0]the maximum and minimum values of f on $\left[x_{j-1}, x_{j}\right]$. Let P be a partition consisting of the $\left\{\bar{I}_{i}\right\}$ and the small intervals in $J \backslash B$. We may estimate
\[

$$
\begin{aligned}
U(f, P)-L(f, P) & \leq \sum_{j}\left(M_{j}-m_{j}\right)\left(x_{j+1}-x_{j}\right)+2 M \sum_{i=1}^{N}\left|I_{i}\right| \\
& \leq(2 / n)+2 M \varepsilon
\end{aligned}
$$
\]

Choosing n large enough we can find a partition P so that $U(f, P)-L(f, P)<4 M \varepsilon$ and, since $\varepsilon>0$ is arbitrary, we conclude that f is Riemann integrable. This proves the first direction.
(c) (2 points) Suppose that f is Riemann integrable. We will use this fact to estimate the measure of the discontinuity set. Since f is integrable, there is a partition P so that $U(f, P)-L(f, P)<$ ε / n. Denote by I_{j} the j th interval in this partition. We may estimate

$$
\begin{aligned}
\frac{1}{n} m\left(A_{n}\right) & \leq \sum_{j: I_{j} \cap E \neq \emptyset} \frac{1}{n}\left|I_{j}\right| \\
& \leq \sum_{j: I_{j} \cap E \neq \emptyset}\left(M_{j}-m_{j}\right)\left|I_{j}\right| \\
& \leq U(f, P)-L(f, P) \\
& <\varepsilon / n
\end{aligned}
$$

and conclude that $m\left(A_{1 / n}<\varepsilon\right.$ for any $\varepsilon>0$. Since $\varepsilon>0$ is arbitrary, we conclude that $m\left(A_{1 / n}\right)=0$ for all n. Since A, the set of discontinuities of f, is given by $A=\cup_{n=1}^{\infty} A_{1 / n}$, it follows that $m(A)=0$.

[^0]: ${ }^{1}$ Students are allowed to assume this, but here's a proof. If $\operatorname{osc}(f, c)=0$, given any $\varepsilon>0$ there is a $\delta>0$ so that for any $x, y \in I(c, \delta),|f(x)-f(c)| \leq \operatorname{osc}(f, c, r)<$ ε. On the other hand, if f is continuous at c then for any $\varepsilon>0$ there is a $\delta>0$ so that $|f(x)-f(c)|<\varepsilon$ if $|x-c|<\delta$. Estimating $|f(x)-f(y)| \leq|f(x)-f(c)|+$ $|f(y)-f(c)|$ we see that osc $(f, c, \delta)<2 \varepsilon$, which shows that osc $(f, c, r) \rightarrow 0$ as $r \rightarrow 0$ since osc (f, c, r) is monotone decreasing.

