PROBLEM SET \#5

1. (Not graded) Stein and Shakarchi, page 89, Exercise 1

Consider the 2^{n} sets F_{j}^{*} where $F_{j}^{*}=F_{1}^{\prime} \cup F_{2}^{\prime} \cup \ldots \cup F_{n}^{\prime}$ where each $F_{k}^{\prime}, 1 \leq k \leq n$, is either F_{k} or F_{k}^{c}. We'll leave out $F_{1}^{c} \cap \ldots \cap F_{n}^{c}$ which contains no points of any F_{j}, leaving $2^{n}-1$ sets F_{k}^{\prime}.

First, we claim that the F_{j}^{\prime} are disjoint. If $j \neq k$ then there is at least one index $i, 1 \leq i \leq n$, so that, writing

$$
F_{j}^{\prime}=F_{1}^{\prime} \cup \ldots \cup F_{i}^{\prime} \cup \ldots \cup F_{n}^{\prime}
$$

and

$$
F_{k}^{\prime}=F_{1}^{\prime \prime} \cup \ldots \cup F_{i}^{\prime \prime} \cup \ldots \cup F_{n}^{\prime \prime}
$$

we have $F_{i}^{\prime}=\left(F_{i}^{\prime \prime}\right)^{c}$. It follows that no x can belong both to F_{j}^{\prime} and to F_{k}^{\prime}.

Next, we claim that

$$
\cup_{k=1}^{n} F_{k}=\cup_{j=1}^{2^{n}-1} F_{j}^{\prime} .
$$

If we fix k, we can obtain F_{k} by taking the union over all F_{j}^{\prime} of the form

$$
F_{j}^{\prime}=F_{1}^{\prime} \cup \ldots \cup F_{k} \cup \ldots \cup F_{n}^{\prime}
$$

(i.e., only the k th set is fixed). Note that, by this construction,

$$
F_{j}=\cup_{k^{\prime}: F_{k}^{\prime} \subset F_{j}} F_{k}^{\prime} .
$$

It follows that $\cup_{k=1}^{n} F_{k} \subset \cup_{j=1}^{2^{n}-1} F_{j}^{\prime}$. On the other hand, any $x \in$ $\cup_{k=1}^{2^{n}-1} F_{k}^{\prime}$ must lie in at least one F_{k}, so $\cup_{k=1}^{2^{n}-1} F_{k}^{\prime} \subset \cup_{k=1}^{n} F_{k}$. This shows that $\cup_{k=1}^{n} F_{k}=\cup_{j=1}^{2^{n}-1} F_{j}^{\prime}$ as claimed.

[^0]2. (2 points) Stein and Shakarchi, page 91, Exercise 9 (Tchebychev inequality)

Suppose that $f \geq 0$ and that f is integrable, and let

$$
E_{\alpha}=\{x: f(x)>\alpha\} .
$$

Then

$$
\begin{aligned}
\alpha m\left(E_{\alpha}\right) & =\int_{E_{\alpha}} \alpha & & \text { (Integration of simple functions) } \\
& \leq \int_{E_{\alpha}} f & & \text { (Monotonicity) } \\
& \leq \int f & & \text { (Monoticity again) }
\end{aligned}
$$

Hence

$$
m\left(E_{\alpha}\right) \leq \frac{1}{\alpha} \int f
$$

which is Tchebyshev's inequality.
3. (8 points) Stein and Shakarchi, page 91, Exercise 10
(a) (4 points)

Suppose that $f \geq 0$. Let

$$
E_{2^{k}}=\left\{x: f(x)>2^{k}\right\}
$$

and

$$
F_{k}=\left\{x: 2^{k}<f(x) \leq 2^{k+1}\right\}
$$

We claim that the following three statements are equivalent.
(1) f is integrable
(2) $\sum_{k=-\infty}^{\infty} 2^{k} m\left(F_{k}\right)<\infty$
(3) $\sum_{k=-\infty}^{\infty} 2^{k} m\left(E_{2^{k}}\right)<\infty$

We will show $(1) \Leftrightarrow(2)$ and $(2) \Leftrightarrow(3)$.
Suppose that f is integrable. We may estimate

$$
\begin{aligned}
2^{k} m\left(F_{k}\right) & =\int_{F_{k}} 2^{k} & & \text { (integration of simple functions) } \\
& <\int_{F_{k}} f & & \text { (montonicity) }
\end{aligned}
$$

The sums $\sum_{k=-N}^{N} \int_{F_{k}} f$ are monotone nondecreasing in N and bounded above by $\int f$. It follows from the equality above that
$\sum_{k=1}^{\infty} 2^{k} m\left(F_{k}\right)$ converges, showing that $(1) \Rightarrow(2)$. On the other hand, we may estimate

$$
\begin{aligned}
\int_{\cup_{k=-N}^{N} F_{k}} f & \leq \sum_{k=-N}^{N} \int_{F_{k}} f \\
& \leq \sum_{k=-N}^{n} 2^{k+1} m\left(F_{k}\right)
\end{aligned}
$$

By Fatou's lemma, $\int f \leq \liminf _{N \rightarrow \infty} \int_{\cup_{k=-N}^{N}} f<\infty$, so $\int f$ is finite, showing that (2) $\Rightarrow(1)$.

Next, note that

$$
E_{2^{k}}=\cup_{j=k}^{\infty} F_{k}
$$

so that

$$
m\left(E_{2^{k}}\right)=\sum_{j=k}^{\infty} m\left(F_{j}\right)
$$

where the right-hand sum converges by the convergence of $\sum_{k=-\infty}^{\infty} 2^{k} m\left(F_{k}\right)$ and the comparison test. Now consider the sum

$$
\begin{aligned}
\sum_{k=-\infty}^{\infty} 2^{k} m\left(E_{2^{k}}\right) & =\sum_{k=-\infty}^{\infty} \sum_{j=k}^{\infty} 2^{k} m\left(F_{j}\right) \\
& =\sum_{j=-\infty}^{\infty} \sum_{k=-\infty}^{j} 2^{k} m\left(F_{j}\right) \\
& =\sum_{j=-\infty}^{\infty} 2^{j+1} m\left(F_{j}\right) \\
& =2 \sum_{j=-\infty}^{\infty} 2^{j} m\left(F_{j}\right) \\
& <\infty
\end{aligned}
$$

(see Figure 1 to understand the second step). This shows that $(2) \Rightarrow(3)$.

Figure 1. Ordered pairs occuring in $\sum_{k=-\infty}^{\infty} \sum_{j=k}^{\infty}(\ldots)$

Finally, suppose that $\sum_{k=-\infty}^{\infty} 2^{k} m\left(E_{2^{k}}\right)<\infty$. We compute

$$
\begin{aligned}
\sum_{k=-\infty}^{\infty} 2^{k} m\left(F_{k}\right) & =\sum_{k=-\infty}^{\infty} 2^{k}\left[m\left(E_{2^{k}}\right)-m\left(E_{2^{k+1}}\right)\right] \\
& =\sum_{k=-\infty}^{\infty} 2^{k-1} m\left(E_{2^{k}}\right)
\end{aligned}
$$

which is clearly convergent, showing that $(3) \Rightarrow(2)$.
(b) (4 points)

Now consider the function

$$
f(x)= \begin{cases}|x|^{-a}, & |x| \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

For this function,
$E_{2^{k}}=\left\{x:|x|<1,|x|^{-a}>2^{k}\right\}= \begin{cases}\left\{x:|x|<2^{-k / a}\right\} & k \geq 1 \\ \{x:|x|<1\} & k \leq 0\end{cases}$
so

$$
m\left(E_{k}\right)= \begin{cases}c_{d} 2^{-d k / a}, & k \geq 0 \\ 1 & k<0\end{cases}
$$

Hence

$$
\sum_{k=-\infty}^{\infty} 2^{k} m\left(E_{2^{k}}\right)=\sum_{k=-\infty}^{0} 2^{k}+c_{d} \sum_{k=1}^{\infty} 2^{(1-d / a) k}
$$

which converges so long as $a<d$.
Finally, consider the function

$$
g(x)= \begin{cases}|x|^{-b}, & |x|>1 \\ 0 & \text { otherwise } .\end{cases}
$$

We compute

$$
E_{2^{k}}=\left\{x:|x| \geq 1,|x|^{-b}>2^{k}\right\}= \begin{cases}\left\{x: 1 \leq|x|<2^{-k / b}\right\} & k<0 \\ \varnothing, & k \geq 0\end{cases}
$$

Hence,

$$
m\left(E_{2^{k}}\right)= \begin{cases}0 & k>0 \\ c_{d}\left[\left(2^{-d k / b}-1\right]\right. & k \leq 0\end{cases}
$$

and

$$
\sum_{k=-\infty}^{\infty} 2^{k} m\left(E_{2^{k}}\right)=\sum_{k=-\infty}^{-1} c_{d} 2^{(1-d / b) k}
$$

which converges provided $b>d$.

[^0]: Due: February 25, 2019.

