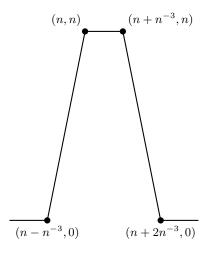
PROBLEM SET #6

- 1. (4 points) Stein and Shakarchi, page 91, problem 6
 - (a) (2 points) For $n \ge 2$, let $f_n(x)$ be the piecewse continuous function satisfying

$$f_n(x) = \begin{cases} 0 & x < n - n^{-3} \\ n & n < x < n + n^{-3} \\ 0 & x > n + 2/n^3 \end{cases}$$

with extension by linearity in the intervals $[n - n^{-3}, n]$ and $[n + n^{-3}, n + 2/n^3]$.



Since $f_n(x) \leq n$ in $[n - n^{-3}, n + 2n^{-3}]$ and is zero elsewhere, it is clear that

$$\int f_n(x) \, dx \le n \cdot \frac{3}{n^3} = \frac{3}{n^2}.$$

Hence the series $f(x) = \sum_{n=2}^{\infty} f_n(x)$ converges to a function in $L^1(\mathbb{R})$. On the other hand, $\sup_{|x| \ge n} f(x)$ is unbounded for any n, so $\limsup_{x \to \infty} f(x) = +\infty$.

Due: March 4, 2019.

PROBLEM SET #6

(b) (2 points) (courtesy of Ethan Reed, with slight changes) Let $\varepsilon > 0$ be given. By uniform continuity, there is a $\delta > 0$ so that $|f(x) - f(y)| < \varepsilon/2$ whenever $|x - y| < \delta$. On the other hand, there is an N so that $\int_{|x| \ge N} |f(x)| dx < \varepsilon \delta$ since f is integrable. Suppose that $\limsup_{|x| \to \infty} |f(x)| > 2\varepsilon$ for some $\varepsilon > 0$. There is an x with $|x| > N + \delta$ with $|f(x)| > \varepsilon$. We then estimate

$$\int_{|y|>N} |f(y)| \, dy \ge \int_{|x-y|<\delta} |f(y)| \, dy \ge \frac{\varepsilon}{2} \cdot 2\delta = \delta\varepsilon$$

which gives a contradiction.

2. (3 points) Stein and Shakarchi, page 91, problem 8

By absolute continuity of the integral, given $\varepsilon > 0$ there is a $\delta > 0$ so that $\int_E |f| \leq \varepsilon$ whenever $m(E) < \delta$. In particular $\int_x^y |f(t)| dt < \varepsilon$ whenever $|y - x| < \delta$. Suppose that x < y with $y - x < \delta$. Then

$$|F(y) - F(x)| = \left| \left(\int_{-\infty}^{y} - \int_{-\infty}^{x} \right) f(t) dt \right|$$
$$\leq \int_{x}^{y} |f(t)| dt$$
$$< \varepsilon$$

which shows the absolute continuity.

3. (3 points) Stein and Shakarchi, page 91, problem 11

Let $E_n = \{x : f(x) < -1/n\}$. On the one hand $\int_{E_n} (-f) \leq 0$ by hypothesis. On the other hand $\int_{E_n} (-f) \geq \frac{1}{n} m(E_n)$, so $m(E_n) = 0$. Since

$$\{x : f(x) < 0\} = \bigcup_{m=1}^{\infty} E_n$$

it follows that $m({x : f(x) < 0}) = 0$ as claimed.

If $\int_E f = 0$ for every measurable set E, the same is true of -f. We may then conclude that $f \ge 0$ a.e. and $f \le 0$ a.e., which implies that f(x) = 0 for a.e. x.

4. (not graded) Stein and Shakarchi, page 92, problem 12

(Courtesy of Samir Donmazov) We will construct a sequence $\{I_n\}$ of intervals with $m(I_n) \to 0$ as $n \to \infty$ and $f_n(x) = \chi_{I_n}(x)$. This will insure that $||f_n||_{L^1} \to 0$. We will then show that $f_n(x)$ does not converge to 0 for any x.

 $\mathbf{2}$

At stage k we construct 2^{2k+1} intervals of side 2^{-k} by dividing the interval $[-2^k, 2^k]$ into 2^{2k+1} equal parts. Thus if $1 \le m \le 2^{2k+1}$ the *m*th interval at level k is

$$I_{k,m} = \left[-2^k + (m-1) \cdot 2^{-k}, -2^k + m \cdot 2^{-k}\right].$$

We now relabel the intervals $I_{k,m}$ as I_n where $n = \ell_k + m$ and $\ell_k = \sum_{j=0}^{k-1} 2^{2j+1}$, and set $f_n = \chi_{I_n}$. By construction $f_n \to 0$ in L^1 . On the ohter hand, any fixed x with $2^{\ell} \leq |x| < 2^{\ell+1}$ belongs to exactly one of the $I_{k,n}$ for all $k \geq \ell$. Thus $f_n(x)$ is a sequence of 0's and 1's so that $\liminf_{n\to\infty} f_n(x) = 0$ and $\limsup_{n\to\infty} f_n(x) = 1$. Therefore $f_n(x)$ diverges for every x.