PROBLEM SET \#6

1. (4 points) Stein and Shakarchi, page 91, problem 6
(a) (2 points) For $n \geq 2$, let $f_{n}(x)$ be the piecewse continuous function satisfying

$$
f_{n}(x)= \begin{cases}0 & x<n-n^{-3} \\ n & n<x<n+n^{-3} \\ 0 & x>n+2 / n^{3}\end{cases}
$$

with extension by linearity in the intervals $\left[n-n^{-3}, n\right]$ and $[n+$ $\left.n^{-3}, n+2 / n^{3}\right]$.

Since $f_{n}(x) \leq n$ in $\left[n-n^{-3}, n+2 n^{-3}\right]$ and is zero elsewhere, it is clear that

$$
\int f_{n}(x) d x \leq n \cdot \frac{3}{n^{3}}=\frac{3}{n^{2}} .
$$

Hence the series $f(x)=\sum_{n=2}^{\infty} f_{n}(x)$ converges to a function in $L^{1}(\mathbb{R})$. On the other hand, $\sup _{|x| \geq n} f(x)$ is unbounded for any n, so $\lim \sup _{x \rightarrow \infty} f(x)=+\infty$.

[^0](b) (2 points) (courtesy of Ethan Reed, with slight changes) Let $\varepsilon>0$ be given. By uniform continuity, there is a $\delta>0$ so that $|f(x)-f(y)|<\varepsilon / 2$ whenever $|x-y|<\delta$. On the other hand, there is an N so that $\int_{|x| \geq N}|f(x)| d x<\varepsilon \delta$ since f is integrable. Suppose that $\lim \sup _{|x| \rightarrow \infty}|f(x)|>2 \varepsilon$ for some $\varepsilon>0$. There is an x with $|x|>N+\delta$ with $|f(x)|>\varepsilon$. We then estimate
$$
\int_{|y|>N}|f(y)| d y \geq \int_{|x-y|<\delta}|f(y)| d y \geq \frac{\varepsilon}{2} \cdot 2 \delta=\delta \varepsilon
$$
which gives a contradiction.
2. (3 points) Stein and Shakarchi, page 91, problem 8

By absolute continuity of the integral, given $\varepsilon>0$ there is a $\delta>0$ so that $\int_{E}|f| \leq \varepsilon$ whenever $m(E)<\delta$. In particular $\int_{x}^{y}|f(t)| d t<\varepsilon$ whenever $|y-x|<\delta$. Suppose that $x<y$ with $y-x<\delta$. Then

$$
\begin{aligned}
|F(y)-F(x)| & =\left|\left(\int_{-\infty}^{y}-\int_{-\infty}^{x}\right) f(t) d t\right| \\
& \leq \int_{x}^{y}|f(t)| d t \\
& <\varepsilon
\end{aligned}
$$

which shows the absolute continuity.
3. (3 points) Stein and Shakarchi, page 91, problem 11

Let $E_{n}=\{x: f(x)<-1 / n\}$. On the one hand $\int_{E_{n}}(-f) \leq 0$ by hypothesis. On the other hand $\int_{E_{n}}(-f) \geq \frac{1}{n} m\left(E_{n}\right)$, so $m\left(E_{n}\right)=0$. Since

$$
\{x: f(x)<0\}=\cup_{m=1}^{\infty} E_{n}
$$

it follows that $m(\{x: f(x)<0\})=0$ as claimed.
If $\int_{E} f=0$ for every measurable set E, the same is true of $-f$. We may then conclude that $f \geq 0$ a.e. and $f \leq 0$ a.e., which implies that $f(x)=0$ for a.e. x.
4. (not graded) Stein and Shakarchi, page 92, problem 12
(Courtesy of Samir Donmazov) We will construct a sequence $\left\{I_{n}\right\}$ of intervals with $m\left(I_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$ and $f_{n}(x)=\chi_{I_{n}}(x)$. This will insure that $\left\|f_{n}\right\|_{L^{1}} \rightarrow 0$. We will then show that $f_{n}(x)$ does not converge to 0 for any x.

At stage k we construct $2^{2 k+1}$ intervals of side 2^{-k} by dividing the interval $\left[-2^{k}, 2^{k}\right]$ into $2^{2 k+1}$ equal parts. Thus if $1 \leq m \leq 2^{2 k+1}$ the m th interval at level k is

$$
I_{k, m}=\left[-2^{k}+(m-1) \cdot 2^{-k},-2^{k}+m \cdot 2^{-k}\right] .
$$

We now relabel the intervals $I_{k, m}$ as I_{n} where $n=\ell_{k}+m$ and $\ell_{k}=\sum_{j=0}^{k-1} 2^{2 j+1}$, and set $f_{n}=\chi_{I_{n}}$. By construction $f_{n} \rightarrow 0$ in L^{1}. On the ohter hand, any fixed x with $2^{\ell} \leq|x|<2^{\ell+1}$ belongs to exactly one of the $I_{k, n}$ for all $k \geq \ell$. Thus $f_{n}(x)$ is a sequence of 0 's and 1 's so that $\liminf _{n \rightarrow \infty} f_{n}(x)=0$ and $\limsup \operatorname{sum}_{n \rightarrow \infty} f_{n}(x)=1$. Therefore $f_{n}(x)$ diverges for every x.

[^0]: Due: March 4, 2019.

