PROBLEM SET \#7

1. (2 points) Stein and Shakarchi, page 93, problem 18

Solution. Let $F(x, y)=|f(x)-f(y)|$.Since F is integrable on $[0,1] \times[0,1], F^{y}(x)=|f(x)-f(y)|$ is integrable on $[0,1]$ for a.e. y. Since f is finite-valued we may pick one such y, say $y=a$, and setting $f(a)=b$ we conclude that $|f(x)-b|$ is integrable, hence that f is integrable.
2. (2 points) Stein and Shakarchi, page 93, problem 19. Hint: Compute the measure of the set

$$
E=\{(x, y): 0 \leq y \leq f(x)\}
$$

two ways, using Fubini's theorem.
Ex Post Facto Hint: ${ }^{1}$ In fact you can take

$$
E=\{(x, y): 0 \leq y<f(x)\} .
$$

Solution. Following the hint let χ_{E} be the characteristic function of the set E. Note that

$$
E^{y}=\left\{x \in \mathbb{R}^{d}: f(x)<y .\right\} .
$$

Then

$$
\begin{aligned}
m(E) & =\int \chi_{E}(x, y) d x d y \\
& =\int_{\mathbb{R}}\left(\int_{\mathbb{R}^{d}} \chi_{E}(x, y) d x\right) d y \\
& =\int_{\mathbb{R}} m\left(E^{y}\right) d y \\
& =\int_{0}^{\infty} m\left(E^{y}\right) d y
\end{aligned}
$$

[^0]where in the last step we used the fact that $E^{y}=\varnothing$ for $y<0$. On the other hand
\[

$$
\begin{aligned}
m(F) & =\int_{\mathbb{R}^{d}}\left(\int_{R} \chi_{E}(x, y) d y\right) d x \\
& =\int_{\mathbb{R}^{d}} f(x) d x
\end{aligned}
$$
\]

as was to be proved.
3. (6 points) Stein and Shakarchi, page 94, problem 21 (a) - (c). For (a), recall Corollary 3.7 and Proposition 3.9.
(a) (2 points) Prove that $f(x-y) g(y)$ is measurable on $\mathbb{R}^{2 d}$.

Solution Both f and g are finite a.e. since they are integrable functions. From Property 5 of chapter 1 (see the remarks before Property 6 to address the problem that f and g are finite-valued almost everywhere rather than everywhere) it suffices to show that $F(x, y)=f(x-y)$ and $G(x, y)=g(y)$ are measurable. This is an immediate consequence of Proposition 3.9 (for F) and Corollary 3.7 (for G).
Remark: There is one small subtlety here. In order to apply Property 5 and the remarks before property 6 , we need to show that F and G are finite a.e. when viewed as functions on $\mathbb{R}^{d} \times \mathbb{R}^{d}$. Thus if Z_{f} and Z_{g} are the subsets of measure zero in \mathbb{R}^{d} on which f and g are not finite-valued, we need to know that the sets

$$
\begin{aligned}
\widetilde{Z_{f}} & =\left\{(x, y): x-y \in Z_{f}\right\} \\
Z_{g} \times \mathbb{R}^{d} & =\left\{(x, y): x \in \mathbb{R}^{d}, y \in Z_{g}\right\}
\end{aligned}
$$

are also sets of measure zero. One can show that $\widetilde{Z_{f}}$ has measure zero by considering the sets $\widetilde{Z_{f}} \cap B_{k}$ where $B_{k}=\left\{y \in \mathbb{R}^{d}:|y|<\right.$ $k\}$ exactly as in the proof of Proposition 3.9. Using the fact that $Z_{g} \times B_{k} \nearrow Z_{g} \times \mathbb{R}^{d}$ and $m\left(Z_{g} \times B_{k}\right)=m\left(Z_{g}\right) m\left(B_{k}\right)=0$ we can conclude that $Z_{g} \times \mathbb{R}^{d}$ also has measure zero.
(b) (2 points) Show that if f and g are integrable on \mathbb{R}^{d}, then $f(x-y) g(y)$ is integrable on $\mathbb{R}^{2 d}$.

Solution It is enough to show that $\int_{\mathbb{R}^{2 d}}|f(x-y) \| g(y)| d x d y<$ ∞. By Tonelli's theorem we compute

$$
\begin{aligned}
\int_{\mathbb{R}^{2 d}} & |f(x-y)||g(y)| d x d y \\
& =\int_{\mathbb{R}^{d}}|g(y)|\left(\int_{\mathbb{R}^{d}}|f(x-y)| d x\right) d y \\
& =\left(\int_{\mathbb{R}^{d}}|g(y)| d y\right)\left(\int_{\mathbb{R}^{d}}|f(x)| d x\right) \\
& <\infty
\end{aligned}
$$

In the second step, we used the fact that

$$
\int|f(x-y)| d x=\int|f(x)| d x
$$

by translation invariance of Lebesgue measure. ${ }^{2}$
(c) (2 points) Show that the convolution of integrable functions f and g, defined by

$$
(f * g)(x)=\int_{\mathbb{R}^{d}} f(x-y) g(y) d y
$$

is well-defined for a.e. x
Solution Let $H(x, y)=f(x-y) g(y)$. In part (a) we showed that H is measurable and in part (b) we showed that H is integrable. It follows from Fubini's Theorem that the slice $H_{x}(y)$ is measurable and integrable on \mathbb{R}^{d} as a function of y for a.e. x. Since $(f * g)(x)=\int H_{x}(y) d y$, it follows that $(f * g)(x)$ is defined for a.e. x.

[^1]
[^0]: Due: March 25, 2019.
 ${ }^{1}$ I am indebted to one of you for copious correspondence. You know who you are!

[^1]: ${ }^{2}$ This follows from the fact that, if E is a measurable set of finite measure and $E+y$ denotes the set $\{x+y: x \in E\}$, then $m_{*}(E+y)=m_{*}(E)$.

