PROBLEM SET \#8 - THE FOURIER TRANSFORM

1. (4 points) Stein and Shakarchi, page 94, problem 21 (d) - (e)

21(d) (2 points) First, we have the estimate

$$
|(f * g)(x)| \leq \int|f(x-y)||g(y)| d y
$$

We apply Tonelli's Theorem on $\mathbb{R}^{d} \times \mathbb{R}^{d}$ to compute

$$
\begin{aligned}
\int|f(x-y)||g(y)| d x d y & =\int\left(\int|f(x-y)||g(y)| d x\right) d y \\
& =\int|g(y)|\left(\int \mid f(x-y) d x\right) d y \\
& =\|f\|_{L^{1}}\|g\|_{L^{1}} .
\end{aligned}
$$

which shows that $F(x, y)=f(x-y) g(y)$ is integrable. It follows from Fubini's Theorem that $(f * g)(x)=\int F(x, y) d y$ defines a measurable and integrable function of x.
21(e) (2 points) For $f \in L^{1}\left(\mathbb{R}^{d}\right)$, we define

$$
\widehat{f}(\xi)=\int e^{-2 \pi i x \cdot \xi} f(x) d x
$$

\widehat{f} is bounded since

$$
|\widehat{f}(\xi)| \leq \int|f(x)| d x=\|f\|_{L^{1}}
$$

To see that \widehat{f} is continuous, note that

$$
\begin{aligned}
\widehat{f}(\xi+h)-\widehat{f}(\xi) & =\int\left(e^{-2 \pi i(x+h) \cdot \xi}-e^{-2 \pi i x \cdot \xi}\right) f(x) d x \\
& =\int e^{-2 \pi i \xi \cdot x}\left(e^{-2 \pi i \xi \cdot h}-1\right) f(x) d x
\end{aligned}
$$

The integrand on the last line is bounded pointwise in x by $2|f(x)|$ and goes to zero as $h \rightarrow 0$. It now follows from the Dominated Convergence Theorem that $\widehat{f}(\xi+h)-\widehat{f}(\xi) \rightarrow 0$ as $h \rightarrow 0$.

[^0]I corrected a couple of typos in this paragraph from the previous version; thanks to the grader for pointing these out!
2. (2 points) Stein and Shakarchi, page 94, problem 22 (The RiemannLebesgue Lemma)

We can write

$$
\widehat{f}(\xi)=\frac{1}{2} \int_{\mathbb{R}^{d}}\left[f(x)-f\left(x-\xi^{\prime}\right)\right] e^{-2 \pi i x \cdot \xi} d x
$$

because

$$
\begin{aligned}
\int_{\mathbb{R}^{d}} f\left(x-\xi^{\prime}\right) e^{-2 \pi i x \cdot \xi} d x & =\int_{\mathbb{R}^{d}} f(y) e^{-2 \pi i y \cdot \xi} e^{-2 \pi i \xi^{\prime} \cdot \xi} d y \\
& =-\int_{\mathbb{R}^{d}} f(y) e^{-2 \pi i y \cdot \xi} d y
\end{aligned}
$$

since $\xi^{\prime} \cdot \xi=\frac{1}{2}$ and $e^{-\pi i}=-1$. Then we may estimate

$$
|\widehat{f}(\xi)|=\leq f r a c 12 i n t\left|f\left(x-\xi^{\prime}\right)-f(x)\right| d x
$$

which goes to zero as $\xi \rightarrow \infty$ using Proposition 2.5.
3. (4 points) Stein and Shakarchi, page 95 , problem 24
(a) (2 points) To see that $f * g$ is uniformly continuous, compute $(f * g)(x+h)-(f * g)(x)=\int[f(x+h-y)-f(x-y)] g(y) d y$ and estimate (using $|g(y)| \leq M$ for a.e. y)

$$
\begin{aligned}
|(f * g)(x+h)-(f * g)(x)| & \leq M \int|f(x+h-y)-f(x-y)| d y \\
& =M \int|f(h-y)-f(-y)| d y \\
& =M \int|f(z+h)-f(z)| d z \\
& =\|f(\cdot+h)-f(\cdot)\|_{L^{1}}
\end{aligned}
$$

where in the third step we used translation invariance and in the fourth step we set $z=-y$ (reflection).
(b) (2 points) Suppose that f and g are both integrable, and that g is bounded. It then follows from the proof in problem $21(\mathrm{~d})$ that $f * g$, in addition to being continuous, is also integrable. From problem 6 (assuming that the proof goes through for \mathbb{R}^{d}), we can then conclude that $(f * g)(x) \rightarrow 0$ as $|x| \rightarrow \infty$.
One can also give a simple direct proof. Suppose that f is uniformly continuous and integrable, and that $\limsup _{|x| \rightarrow \infty}|f(x)|=$ $c>0$. There is a sequence of points $\left\{x_{n}\right\}$ with $x_{n} \rightarrow \infty$ and
$\left|f\left(x_{n}\right)\right|>c / 2$. By passing to a subsequence if needed we may assume that $\left|x_{n}-x_{n-1}\right|>1$. By uniform continuity there is a $\delta \in(0,1 / 2)$ so that $|f(y)-f(x)| \leq c / 4$ if $|x-y|<\delta$. It follows that $|f(y)|>c / 4$ on each ball $B_{\delta}\left(x_{n}\right)$ and that these balls are disjoint. But then $\int|f| \geq \sum \int_{B_{\delta}\left(x_{n}\right)}|f|$ which is infinite, a contradiction.
4. (\aleph_{0} points) Prove the Riemann Hypothesis.

No solutions will be provided for optional problems!

It's a pity no one did this problem; you could have skipped prelims!

[^0]: Due: April 1, 2019.

