PROBLEM SET $\# 9$ SOLUTIONS

1. (4 points) Stein and Shakarchi, page 145 , problem 1

Let φ be an integrable function with $\int \varphi=1$, and $K_{\delta}(x)=$ $\delta^{-d} \varphi(x / \delta)$.
(a) (2 points) First $\int K_{\delta}(x) d x=1$ by scaling, proving property (i). Second, $\int\left|K_{\delta}(x)\right| d x=\int|\varphi(x)| d x$, again by scaling, proving property (ii). Finally,

$$
\begin{aligned}
\int_{|x|>\eta}\left|K_{\delta}(x)\right| d x & =\delta^{-d} \int_{|x|>\eta}|\varphi(x / \delta)| d x \\
& =\int_{|y|>\eta / \delta}|\varphi(y)| d y
\end{aligned}
$$

which goes to zero as $\delta \rightarrow 0$ by dominated convergence.
(b) (2 points) Now suppose that $|\varphi(x)| \leq M$ and $\varphi(x)=0$ for $|x|>c$. Condition (i)' has already been shown to hold, so it suffices to check (ii)' and (iii)'. By our assumptions, $K_{\delta}(x)=0$ for $|x|>c \delta$ and $\left|K_{\delta}(x)\right| \leq \delta^{-d} M$ for all x. Condition (ii) $)^{\prime}$ is immediate from the bound $\left|K_{\delta}(x)\right| \leq M \delta^{-d}$. To verify condition (iii)', estimate

$$
|x|^{d+1}\left|K_{\delta}(x)\right| \leq(c \delta)^{d+1} M \delta^{-d}=c^{d+1} \delta M
$$

which implies (iii)'.
(c) (ungraded)This is essentially the proof given in class. We may estimate

$$
\begin{aligned}
\left|f * K_{\delta}-f\right| & \leq \int\left|K_{\delta}(y)\right||f(x-y)-f(x)| d x d y \\
& \leq \int_{|y|<\eta}\left|K_{\delta}(y)\right|\left\|f_{y}-f\right\|_{L^{1}} d y+\int_{|y| \geq \eta}\left|K_{\delta}(y)\right| 2\|f\|_{L^{1}} d y
\end{aligned}
$$

By the continuity of translations, we may choose η small enough that $\left\|f_{y}-f\right\|<\varepsilon$.
2. (4 points) Stein and Shakarchi, page 146, problem 5

Due: April 8, 2019.
(a) ($\mathbf{2}$ points) We can compute as an improper Riemann integral.

$$
\begin{aligned}
\int_{-1 / 2}^{1 / 2} \frac{1}{|x|(\log (1 /|x|))^{2}} d x & =2 \int_{0}^{1 / 2} \frac{1}{(\log t)^{2}} \frac{d t}{t} \\
& =2 \int_{-\infty}^{-\log 2} \frac{1}{u^{2}} d u, \quad u=\log t \\
& =\left.2\left[-\frac{1}{u}\right]\right|_{-\infty} ^{-\log 2} \\
& =\frac{2}{|\log 2|}
\end{aligned}
$$

(b) (2 points) Consider

$$
\begin{aligned}
\frac{1}{x+\varepsilon} \int_{0}^{x} \frac{1}{t(\log t)^{2}} d t & =\frac{1}{x} \int_{-\infty}^{\log x} \frac{1}{u^{2}} d u \\
& =\frac{1}{x|\log (x+\varepsilon)|}
\end{aligned}
$$

Since $(0, x+\varepsilon)$ is an interval containing x, it follows that

$$
f^{*}(x) \geq \frac{1}{x|\log x|}
$$

and so is not integrable.
3. (2 points) Stein and Shakarchi, page 146, problem 6.

This problem requires the Rising Sun Lemma, Lemma 3.5, for its solution. Define the one-sided maximal function f_{+}^{*} for a measurable function f on the real line by

$$
f_{+}^{*}(x)=\sup _{h>0} \frac{1}{h} \int_{x}^{x+h}|f(y)| d y
$$

and

$$
E_{\alpha}^{+}=\left\{x \in \mathbb{R}: f_{+}^{*}(x)>\alpha\right\} .
$$

We claim that

$$
m\left(E_{\alpha}^{+}\right)=\frac{1}{\alpha} \int_{E_{\alpha}^{+}}|f(y)| d y .
$$

Let F be the function

$$
F(x)=\int_{0}^{x}|f(y)| d y-\alpha x
$$

If $x \in E_{\alpha}^{+}$, there is an $h>0$ so that $\int_{x}^{x+h}|f(y)| d y-\alpha h>0$, i.e., $F(x+h)-F(x)>0$. On the other hand, if $F(x+h)-F(x)>\alpha h$ for a given x and some h, it follows that $f_{+}^{*}(x)>\alpha$. Hence

$$
E_{\alpha}^{+}=\{x \in \mathbb{R}: F(x+h)>F(x) \text { for some } h>0\}
$$

By Lemma 3.5, E_{α}^{+}is either empty or is a disjoint union of open intervals $\left(a_{k}, b_{k}\right)$ with $F\left(b_{k}\right)=F\left(a_{k}\right)$, i.e., $\int_{a_{k}}^{b_{k}}|f(y)| d y=\alpha\left(b_{k}-a_{k}\right)$. Hence

$$
m\left(E_{\alpha}^{+}\right)=\sum_{k}\left(b_{k}-a_{k}\right)=\sum_{k} \frac{1}{\alpha} \int_{a_{k}}^{b_{k}}|f(y)| d y \cdot m \frac{1}{\alpha} \int_{E_{\alpha}^{+}}|f(y)| d y .
$$

