
OVERVIEW OF MEASURE THEORY AND INTEGRATION

OUTER MEASURE AND LEBESGUE MEASURE

If E ⊂ Rd, the outer measure of E is the nonnegative extended real
number

m∗(E) = inf

{
∞∑
i=1

|Qi| : E ⊂
∞⋃
i=1

Ei

}

We will show that m∗( · ) is a monotone, countably subadditive set
function.

We will call a subset E of Rd Lebesgue measurable (or simply mea-
surable) if for each ε > 0 there is an open set O ⊃ E with

m∗(O − E) ≤ ε.

This is a “regularity condition” on E which says that it can be ap-
proximated ‘from the outside’ by open sets.

If E is measurable, the Lebesgue measure of E, denoted by m(E),
is given by m(E) = m∗(E). That is, m is the restriction of the set
function m∗ to the Lebesgue measurable sets.

Denote by M the collection of Lebesgue measurable sets. Ob-
vously, M contains the open sets. We will show that M is closed
under countable unions, countable intersections, and complements
(such a collection of sets is called a σ-algebra). and will show that m
is well-behaved under these operations.

In what follows, we’ll say that a property holds almost everywhere
(abbreviated a.e.), or for almost every x (abbrevitated a.e. x), if the set
on which the property does not hold has Lebesgue measure zero.

MEASURABLE FUNCTIONS

A function f : D ⊂ Rd → R is measurable if, for every a ∈ R, the set
Ea = {x ∈ D : f(x) < a} is a measurable set. Notice that, since M
contains open sets, any continuous function is necessarily measur-
able. Also notice that the characteristic function of a measurable set
is measurable.

Date: January 11, 2019.
1



2 OVERVIEW OF MEASURE THEORY AND INTEGRATION

By the time we finish with measurable functions, we will under-
stand (and formulate precisely) Littlewood’s1 three principles:

(1) Every measurable set is ‘nearly’ a finite union of intervals
(2) Every measurable function is ‘nearly’ a continuous function

(Lusin’s Theorem)
(3) Every convergent sequence of measurable functions is ‘nearly’

uniformly convergent (Ěgorov’s Theorem)

THE LEBESGUE INTEGRAL

We will develop a generalization of the Riemann integral for mea-
surable functions f , the Lebesgue integral of f , which agress with the
Riemann integral if f is a Riemann-integrable function. We’ll begin
by integrating simple functions, i.e., functions of the form

f(x) =
n∑

i=1

ciχEi

where the ci are real numbers and χE is the characteristic function of
the measurable set E, that is

χE(x) =

{
1, x ∈ E
0, x 6∈ E.

We’ll define ∫
f =

n∑
i=1

cim(Ei).

From this starting point, we will work up successfully through:
(1) Simple functions
(2) Bounded measurable functions with support on a set of finite

measure
(3) Nonnegative functions
(4) ‘Integrable’ functions

A measurable function f is called integrable if
∫
|f | is finite. The set

of all integrable functions is denoted L1(Rd). It will be useful to quo-
tient out by the following equivalence relation: f ∼ g if f and g are
measurable and f(x) − g(x) = 0 for a.e. x. The quotient of L1(Rd)
by this equivalence relation is denoted L1(Rd). We will show that
L1(Rd) is a complete metric space with metric d(f, g) =

∫
|f − g|.

1J. E. Littlewood (1885-1977) was an English mathematician who worked exten-
sively with G. H. Hardy and was thesis advisor for Srinivasa Ramanujan.
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We will prove three key convergence theorems for the Lebesgue
integral.

(1) Fatou’s Lemma: If {fn} is a sequence of nonnegative mea-
surable functions and fn(x) → f(x) for almost every x, then∫
f ≤ lim infn→∞

∫
fn.

(2) Monotone Convergence Theorem: If {fn} is a sequence of
nonnegative measurable functions with fn(x) ≤ fn+1(x) for
a.e. x and fn → f a.e., then∫

f = lim
n→∞

∫
fn.

(3) Dominated Convergence Theorem: If {fn} is a sequence of
measurable functions with fn → f a.e and |fn(x)| ≤ g(x) for a
fixed, nonnegative, integrable function g, then limn→∞

∫
fn =∫

f .


