MATH 676 FURTHER PROPERTIES OF LEBESGUE MEASURE

Recall that the outer measure of a set $E \subset \mathbb{R}^d$ is given by

$$m_*(E) = \inf\left\{\sum_{j=1}^{\infty} |Q_i| : E \subset \bigcup_{j=1}^{\infty} Q_j\right\}$$

where the infimum is over covers of E by closed cubes.

Recall that a subset E of \mathbb{R}^d is Lebesgue measurable if for any $\varepsilon > 0$, there is an open set $\mathcal{O} \supset E$ with

$$m_*(\mathcal{O} - E) \le \varepsilon.$$

We have shown that the measurable sets contain open sets and are closed under countable unions, countable intersections, and complements. It remains to prove countable additivity and several *monotonicity* and *regularity* properties of Lebesgue measure.

1. Countable Additivity

Theorem 1. If $\{E_i\}_{i=1}^{\infty}$ are disjoint measurable sets, and $E = \bigcup_{i=1}^{\infty} E_i$, then

$$m(E) = \sum_{j=1}^{\infty} m(E_j).$$

1.1. Monotonicity. If $\{E_k\}_{k=1}^{\infty}$ is a sequence of measurable sets with $E_k \subset E_{k+1}$ and $E = \bigcup_{k=1}^{\infty} E_k$, we say that $E_k \nearrow E$.

If $\{E_k\}_{k=1}^{\infty}$ is a sequence of measurable sets with $E_k \supset E_{k+1}$ and $E = \bigcup_{k=1}^{\infty} E_k$, we say that $E_k \searrow E$.

Theorem 2. Suppose $\{E_k\}$ is a sequence of measurable sets.

- (i) $f E_k \nearrow E$, then $m(E_k) \rightarrow m(E)$.
- (ii) If $E_k \searrow E$, then $m(E_k) \to m(E)$.

1.2. **Regularity.** If *E* and *F* are subsets of \mathbb{R}^d , the symmetric difference of *E* and *F*, denoted $E\Delta F$, is given by

$$E\Delta F = (E - F) \cup (F - E).$$

Theorem 3. Suppose that $E \subset \mathbb{R}^d$ is measurable. Then for every $\varepsilon > 0$:

- (i) There is an open set \mathcal{O} with $E \subset \mathcal{O}$ and $m(\mathcal{O} E) \leq \varepsilon$.
- (ii) There is a closed set F with $F \subset E$ and $m(E F) \leq \varepsilon$.
- (iii) If m(E) is finite, there is a compact set K with $K \subset E$ and $m(E K) < \varepsilon$.
- (iv) If m(E) is finite, there is a finite union $F = \bigcup_{i=1}^{N} Q_i$ of closed cubes such that

$$m(E\Delta F) \le \varepsilon.$$

Date: January 23, 2019.

An F_{σ} set is a countable union of closed sets, and a G_{δ} set is a countable intersection of open sets. Using (i) and (ii) of the previous theorem, we can prove:

Theorem 4. A subset E of \mathbb{R}^d is measurable:

(i) iff E differs from a G_{δ} set by a set of measure zero (ii) iff E differs from a an F_{σ} set by a set of measure zero.