Math 676
 Midterm Exam Answers

Mandatory Problems

Give a complete solution to all three of the following problems.

1. (20 points)
(a) (5 points) Say what it means for a subset E of \mathbb{R}^{d} to be measurable.

Solution: A subset E of \mathbb{R}^{d} is measurable if for any $\varepsilon>0$ there is an open set $\mathcal{O} \supset E$ with $m_{*}(\mathcal{O}-E)<\varepsilon$.
(b) (15 points) Suppose that A and B are measurable sets with $m(A)=m(B)$ and $A \subset E \subset B$. Show that E is measurable and $m(E)=m(A)=m(B)$.

Solution: We may write

$$
E=A \cup(B-E)
$$

Since A is measurable, it suffices to show that $B-E$ has Lebesgue measure zero. Observe that $B=A \cup(B-A)$ so $m(B)=m(A)+m(B-A)$ since A and B are measurble. Since $m(A)=m(B)$ it follows that $m(B-A)=0$. Since $B-E \subset B-A$, we see that $m_{*}(B-E)=0$.
2. (30 points)
(a) (5 points) State Egorov's Theorem.

Solution: Suppose that $\left\{f_{k}\right\}_{k=1}^{\infty}$ is a sequence of bounded measurable functions on a set E of finite measure, and assume that $f_{k} \rightarrow f$ for a.e. $x \in E$. For every $\varepsilon>0$ there is a closed set A_{ε} with $m\left(E-A_{\varepsilon}\right) \leq \varepsilon$ and $f_{k} \rightarrow f$ uniformly on A_{ε}.
(b) (5 points) State the Bounded Convergence Theorem.

Solution: Suppose that $\left\{f_{k}\right\}$ is a sequence of measurable functions on a set E of bounded measure with $\left|f_{k}(x)\right| \leq M$ for all x and k. and that $f_{n}(x) \rightarrow f(x)$ for a.e. x as $n \rightarrow \infty$. Then f is a supported on $E,|f(x)| \leq M$ for a.e. x, and

$$
\int\left|f_{k}-f\right| \rightarrow 0 \text { as } k \rightarrow \infty
$$

(c) (20 points) Use Egorov's Theorem to prove the Bounded Convergence Theorem.

Solution: Since all of the f_{k} are measurable, it follows that f is measurable. Since $f(x)=\lim _{k \rightarrow \infty} f_{k}(x)$ for a.e. x, it follows that $|f(x)| \leq M$ for a.e. x.
Given $\varepsilon>0$, it follows from Egorov's Theorem that there is a set A_{ε} with $m\left(E-A_{\varepsilon}\right) \leq \varepsilon$ for which $f_{k}(x) \rightarrow f(x)$ uniformly in $x \in A_{\varepsilon}$ as $k \rightarrow \infty$. We may estimate

$$
\begin{aligned}
\int_{E}\left|f_{k}-f\right| \leq \int_{A_{\varepsilon}} \mid f_{k} & -f\left|+\int_{E-A_{\varepsilon}}\right| f_{k}-f \mid \\
& \leq \int_{A_{\varepsilon}}\left|f_{k}-f\right|+2 M \varepsilon
\end{aligned}
$$

Since $f_{k}(x) \rightarrow f(x)$ uniformly in $x \in A_{\varepsilon}$, we have $\lim _{x \rightarrow \infty} \int_{A_{\varepsilon}}\left|f_{k}-f\right|=0$. Hence, we conclude that

$$
\limsup _{k \rightarrow \infty} \int_{E}\left|f_{k}-f\right| \leq \varepsilon
$$

Since $\varepsilon>0$ is arbitrary, we recover the desired result.
3. (20 points)
(a) (5 points) State the Dominated Convergence Theorem.

Solution: Suppose that $\left\{f_{k}\right\}$ is a sequence of measurable functions converging a.e. to a function f, and that g is an integrable function with the property that $\left|f_{k}(x)\right| \leq g(x)$ for a.e. x. Then

$$
\lim _{k \rightarrow \infty} \int\left|f_{k}-f\right|=0 .
$$

(b) (15 points) Using the Dominated Convergence Theorem, prove the following statement: if f is an integrable function on \mathbb{R}^{d}, there exists a sequence $\left\{f_{k}\right\}$ of measurable functions so that each f_{k} is bounded and has support on a set of finite measure, and $\int\left|f_{k}-f\right| \rightarrow 0$ as $k \rightarrow \infty$.

Solution: For each k let

$$
f_{k}(x)= \begin{cases}f(x), & |x| \leq k \text { and }|f(x)| \leq k \\ 0 & \text { otherwise }\end{cases}
$$

Since f is integrable, $f(x)$ is finite for a.e. x, and hence $f_{k}(x) \rightarrow f(x)$ as $k \rightarrow$ ∞ for a.e. x. Moreover, by construction, $\left|f_{k}(x)\right| \leq|f(x)|$ so we may take $g(x)=|f(x)|$. Applying the DCT we conclude that $\int\left|f_{k}-f\right| \rightarrow 0$ as $k \rightarrow \infty$ as claimed.

Optional Problems

Give a complete solution to one of the following problems. Be sure to indicate clearly which one is to be graded.

1. (30 points) Suppose that $\left\{r_{k}\right\}_{k=1}^{\infty}$ is an ordering of the rationals in $[0,1]$, and that $\left\{a_{k}\right\}_{k=1}^{\infty}$ is a sequence with $\sum_{k=1}^{\infty}\left|a_{k}\right|<\infty$. Show that the sequence $\sum_{k=1}^{\infty} a_{k}\left(x-r_{k}\right)^{-1 / 2}$ converges for almost every $x \in[0,1]$.

Solution: The function $f(x)=|x-r|^{-1 / 2}$ is Lebesgue integrable on $[0,1]$ for any $r \in[0,1]$ since

$$
\int_{0}^{1}|x-r|^{-1 / 2} d x \leq \int_{-1}^{1}|x|^{-1 / 2} d x
$$

which is a convergent improper Riemann integral. (One can also appeal to Exercise 10 in Chapter 2 of Stein and Shakarchi for a more direct proof).
We will show that the series $\sum_{k=1}^{\infty} a_{k}\left(x-r_{k}\right)^{-1 / 2}$ converges for a.e. $x \in[0,1]$. To do this, it suffices to show that the the sum

$$
\sum_{k=1}^{\infty}\left|a_{k}\right| \int_{[0,1]}\left|a_{k}\right|\left|x-r_{k}\right|^{-1 / 2} d x
$$

converges. This follows from the hypothesis that $\sum_{k=1}^{\infty}\left|a_{k}\right|<\infty$.
2. (30 points) Suppose that $\left\{f_{k}\right\}$ is a sequence of measurable functions so that f_{1} is integrable and the sum

$$
\sum_{n=1}^{\infty} \int\left|f_{n+1}(x)-f_{n}(x)\right| d x
$$

converges. Show that $f_{n}(x)$ converges a.e. to a measurable function f and that $\int f_{n} \rightarrow$ $\int f$.

Solution: Consider the functional series

$$
f(x)=f_{1}(x)+\sum_{k=1}^{\infty}\left(f_{k+1}(x)-f_{k}(x)\right) .
$$

We wish to show that this sum converges absolutely for a.e. x and defines a measurable function. Observe that the nth partial sum for f is exactly f_{n}. Since $\int\left|f_{1}\right|+\sum_{k=1}^{\infty} \int\left|f_{k+1}(x)-f_{k}(x)\right| d x$ converges, we may apply Corollary 1.10 from Stein and Shakarchi to conclude that the series for f converges absolutely for a.e. x. The absolute convergence implies that $f_{k}(x) \rightarrow f(x)$ for a.e. x, and that

$$
f_{n}(x)-f(x)=\sum_{k=n}^{\infty}\left(f_{k+1}(x)-f_{k}(x)\right)
$$

for a.e. x. We may then estimate

$$
\int\left|f_{n}(x)-f(x)\right| d x \leq \int \sum_{k=n}^{\infty}\left|f_{k+1}(x)-f_{k}(x)\right| d x
$$

By the Monotone Convergence Theorem, we have

$$
\begin{aligned}
\int \sum_{k=n}^{\infty}\left|f_{k+1}(x)-f_{k}(x)\right| d x & =\sum_{k=n}^{\infty} \int\left|f_{k+1}(x)-f_{k}(x)\right| d x \\
& \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

since $\sum_{k=n}^{\infty} \int\left|f_{k+1}(x)-f_{k}(x)\right| d x$ converges.

