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Outline.

1. The Radon transform and a little bit about CAT scanning.

2. Electrical impedance tomography.
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Part I: The Radon transform

Let Ω ⊂ Rn and let ρ : Ω → R be a function describing the
attenuation of x-rays in Ω. If we shine an x-ray beam along a
line, `, passing through Ω and measure the decrease in intensity
of the beam as it passes through Ω, this amounts to measuring
the integral of ρ along `:

Ω

l

R(ρ)(`) =
∫
`
ρ ds.

3



Can we recover ρ from R(ρ)?

The function R(ρ)(`) is called the Radon transform of f . In

order to be able to recover ρ from its Radon transform R(ρ), we

need the map

ρ→ R(ρ)

to be one-to-one. Even better, we would like a formula that

shows us how to compute the attenuation function from its

Radon transform.

This is the mathematical question that we need to be able to

answer in order to construct images in a medical CAT (computer

assisted tomography) scanner.
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Yes, CAT scanners work.

There is a an explicit formula for recovering ρ from R(ρ). (But

this is another talk.) This was discovered by Johann Radon

(1887–1956).

A. Cormack and G. Hounsfeld shared the 1979 Nobel prize in

physiology and medicine for developing CAT scanning technol-

ogy.
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From the press release announcing Cormack’s Nobel prize:

He was the first, from a theoretical point of view, to analyze the

conditions for demonstrating a correct radiographic cross-section

in a biological system. He published his analysis of the problem in

two scientific publications in 1963 and 1964. He understood that

the problem was basically a mathematical one. It was a matter

of finding a reasonable two-dimensional function that described

how X-rays attenuate in each individual part within a slice when

one knows the mean values of the rays’ absorption, the so-called

line integrals, along a number of straight lines within this slice.

. . . He was not aware then that the key mathematical problems

had been considered earlier in an altogether different connection

and deduced his own method of calculation.
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Cormack shared the Nobel prize with Hounsfeld and the press

release continues:

Hounsfield was obviously unaware of Cormack’s contributions

and developed his own method for reconstruction of the image.
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Three dimensions.

Notice that in two dimensions, the family of all lines in the plane

is two-dimensional. A generic line is described by its slope and

y-intercept.

Three dimensions is different. A generic line in three space is

described by (say) the point where it intercepts the plane {z = 0}
and a unit direction vector. A point on the plane is described by

two coordinates and the direction vector corresponds to a point

on the two-dimensional unit sphere, so the family of all lines is

four dimensional.

The problem of finding ρ from the Radon transform is

overdetermined in three dimensions.
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Three dimensions continued.

Practically, this means that measuring the full Radon transform

in three dimensions would involve exposing the patient to unnec-

essary radiation.

Solution 1. Measure a series of two-dimensional slices.

Solution 2. Helical CT scanning.
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Part II: Electrical impedance tomography (EIT)

In electrical impedance tomography, one is trying to find a func-

tion γ(x) which represents the conductivity at a point x in a

region Ω in two or three dimensions.

One makes measurements by measuring the voltage potential

needed to induce a current to flow between two points on the

boundary.
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Why EIT is difficult.

With a CAT scan, each measurement contains information about

ρ on a line. In contrast, each measurement in EIT contains

information about γ throughout the region.
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The mathematical formulation.

The voltage potential, u, is a real-valued function in Ω.

The current induced by this potential is γ∇u.

Conservation of charge implies that

divγ∇u =
n∑
i=1

∂

∂xi
γ(x)

∂

∂xi
u(x) = 0.

The current flow through the boundary is γν · ∇u where ν is the
outer unit normal to the boundary of Ω.

We measure the map that takes a current pattern at the bound-
ary to a voltage potential:

g = γ∇u · ν → C(g) = u (restricted to the boundary)

and ask if we can recover γ from this map.
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The main question of electrical imaging.

Can we recover the conductivity γ, from the map C which takes

current patterns to voltage patterns?

The map C is often called the Neumann to Dirichlet map.

The answer to this question is yes, for conductivities which are

reasonably smooth.
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A simple example.

It is easy to see that if an object is made of layers of conducting

and non-conducting material, then its interior conductivity can

be described from boundary measurements.

Plastic

Metal

Plastic

Metal
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An idea of the proof in three dimensions.

From knowledge of the map C, we can measure the following

expressions involving solutions u1, u2 of the equation divγ∇u = 0:∫
∂Ω

u1γ
∂u2

∂ν
dσ =

∫
Ω
γ∇u1 · ∇u2 + u1divγ∇u2 dx

=
∫

Ω
γ∇u1 · ∇u2 dx.

The first equality above is the Gauss divergence theorem and the

second equality holds if u2 is a solution of divγ∇u2 = 0.
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Exponential solutions when γ is constant

Suppose that γ is a constant. Consider u(x) = ex·ζ where ζ is a

vector with complex entries. We have

divγ∇u = γ
n∑

j=1

∂2

∂x2
j

ex·ζ

= γζ · ζex·ζ

= γ(|Re ζ|2 − | Im ζ|2 + 2iRe ζ · Im ζ)ex·ζ.

This will be zero if and only if

|Re ζ| = | Im ζ|, Re ζ · Im ζ = 0.
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A detour: the Fourier transform

If f is an integrable function on Rn, then the Fourier transform

of f is defined by:

f̂(ξ) =
∫
Rn

e−ix·ξf(x) dx.

Theorem. The map f → f̂ is one-to-one.

f(x) =
1

(2π)n

∫
Rn

f̂(ξ)eix·ξ dξ

Thus, if we can determine f̂ , then we know f .
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Recovering γ̂ in three dimensions, an idea of Calderón

Pick ξ ∈ Rn, and R > 0. Choose n1 and n2 unit vectors so that

ξ, n1 and n2 are orthogonal to each other. (Now you should see

why three dimensions important.)

Set

ζ1 = −i(ξ +
√
R2 − |ξ|2n1) +Rn2

ζ2 = −i(ξ −
√
R2 − |ξ|2n1)−Rn2

For future reference, we note that

ζ1 + ζ2 = −2iξ ζ1 · ζ2 = −|ξ|2.
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Calderón, continued.

We let uj be a solution to the equation divγ∇u = 0 which is

close to the solution of the constant coefficient equation, ex·ζj

and then we have∫
∂Ω

u1γ
∂u2

∂ν
dσ =

∫
Ω
γ(x)∇u1(x) · ∇u2(x) dx

A miracle!

= −|ξ|2
∫

Ω
γ(x)e−2ix·ξ dx

= −|ξ|2γ̂(2ξ)

The miracle is accomplished by letting R go to infinity. This

idea was proposed by Calderón in 1980 and the “miracle” was

made rigorous in 1987 by Sylvester and Uhlmann and Novikov in

independent work.
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Some current research

Some questions for further research.

• What are optimal smoothness conditions that permit one to

recover the conductivity from the Neumann to Dirichlet map.

• Design numerical algorithms to compute the conductivity

from the Neumann to Dirichlet map.

• Find boundaries between regions of differing conductivities

without finding the values of γ.

• Use the internal electrical activity in the body for imaging.
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• Discrete models involving currents in graphs have been stud-

ied.

• A similar imaging question can be posed in the context of

elasticity. A satisfactory answer is availble in three dimen-

sions, but not in two dimensions.



Experiments

A group at Rensselaer Polytechnic Institute has built a machine

and used it to construct two-dimensional images of the human

body.
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Applications?

This method is cheap and safe but does not work very well.

Possible applications include:

• Finding cracks in metal parts.

• Monitoring hospital patients for fluid in lungs.
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