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A system in two dimensions

In this talk, we consider the 2×2-system in the
plane: (

∂x̄ 0
0 ∂x

)
ψ −

(
0 q1

q2 0

)
ψ = 0.

Though it offends my friends in complex anal-
ysis, we use x = x1 + ix2 to denote a complex
variable and thus ∂x̄ and ∂x are the standard
derivatives with respect to x̄ and x.

The solution ψ will be a 2 × 1 vector or 2 × 2
matrix.

We write the system more compactly as

(D −Q)ψ = 0

where

D =

(
∂x̄ 0
0 ∂x

)
and Q =

(
0 q1

q2 0

)
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Why is this interesting?

This system was originally studied by Beals,

Coifman (1985,1988), Fokas, Ablowitz (1984)

and Sung (1994) because it is connected to

solving a non-linear evolution equation in (2+1)

dimensions, the Davey-Stewartson II system,{
qt = iqx1x2 − 4irq
rx1x1 + rx2x2 = (|q|2)x1x2

by the inverse scattering method.
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Why is this interesting? (continued)

If we consider a solution u the conductivity

equation,

divγ(x)∇u(x) = 0,

then (
v

w

)
= γ1/2

(
∂xu

∂x̄u

)
satisfies

(D −Q)

(
v
w

)
= 0.

where the potential Q is related to γ by

Q =

(
0 −∂x log

√
γ

−∂x̄ log
√
γ 0

)
.
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Relation to inverse conductivity problem.

With Uhlmann (1997), we used the system D−
Q to study the inverse conductivity problem

and showed that if ∇γ is in Lp(Ω) for some

p > 2, then γ is uniquely determined by the

Dirichlet to Neumann map.

Recall that the Dirichlet to Neumann map, Λγ
is the map given by

Λγf = γ
∂u

∂ν

where u is the solution of the Dirichlet problem{
divγ∇u = 0 in Ω
u = f on ∂Ω.

Of course, this extended the work of Nachman

(1996) who was the first to prove uniqueness

in two dimensions, but required that the coef-

ficient have two derivatives.
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Scattering for the first order system.

Consider the family of solutions of the free sys-

tem

Dψ0 = 0

which are parameterized by the complex vari-

able z ∈ C:

ψ0(x, z) =

(
eixz 0

0 e−ix̄z

)

We look for solutions of (D − Q)ψ = 0 which

are of the form

ψ(x, z) = m(x, z)ψ0(x, z)

with

m = 1 at infinity.
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Scattering for a first order system (continued)

A calculation shows that the 2 × 2 matrix, m,
should satisfy

(Dz −Q)m = 0

where the operator Dz is given by

Dzf(x, z) = E−1
z DEzf.

The map Ez acts on the diagonal part of f , fd

and the off-diagonal part of f , fo, by

Ezf(x, z) = fd(x, z) +A(x, z)−1fo(x, z).

The matrix A(x, z) is defined by

A(x, z) =

(
a1(x, z) 0

0 a2(x, z)

)

a1(x, z) = exp(ixz̄+ix̄z) a2(x, z) = a1(x,−z̄).

Since the exponents in a1 and a2 are purely
imaginary, we have that

‖Ezf‖p = ‖f‖p.
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Some simple estimates

We let Gz = D−1
z = E−1

z GEz, where G is de-

fined by

Gf(x) =
∫
C

f(y)

x− y
dµ(y).

Fractional integration. If 1 < p < 2, then

f → Gzf maps Lp(C)→ Lp
∗
(C)

where 1/p∗ = 1/p− 1/2.

Hölder’s inequality. If Q ∈ L2, then

f → Qf maps Lp
∗
(C)→ Lp(C).
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Construction of m.

Thus, if Q ∈ Lp(C) for some p between 1 and

2 and Q ∈ L2(C) with ‖Q‖L2 sufficiently small,

then we can construct m as the series

m(·, z) = 1 +
∞∑
j=1

(GzQ)j(GzQ)(·).

The sum will converge in Lp
∗
.

When p = 4/3 and p∗ = 4, we can show con-

vergence when∫
C
|q1(x)|2 + |q2(x)|2 dµ(x) < 2

thanks to E. Lieb’s (1983) sharp estimates for

fractional integration.

If Q = Q∗, we can construct m without re-

quiring that Q be small. But that is another

talk.
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The
∂

∂z̄
equation

With enough assumptions on Q, we can dif-

ferentiate the solution m with respect to the

parameter z and obtain that

∂

∂z̄
m(x, z) = m(x, z̄)S(z)A(x,−z̄)

where the scattering data S is given by

S(z) = −
2J

π

∫
C
Ez(Q(x)m(x, z))o dµ(x)

and the matrix J is defined by

J =
1

2

(
−i 0
0 i

)
.

In addition to appearing in the
∂

∂z̄
-equation,

S(z) is scattering data in the traditional sense

that it appears in the asymptotic expansion of

m as x approaches ∞.
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The scattering map

The map

Q→ S

is the scattering map.

The properties of this map (and its inverse)

have consequences for the inverse conductivity

problem and for non-linear evolution equations.

For example, in the inverse conductivity prob-

lem, we can determine S from the Dirichlet to

Neumann map. If we know S is in L2, then we

can use the ∂/∂z̄ equation to show that m is

uniquely determined by S.
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Some properties of the scattering map.

The map Q → S shares many properties with
the Fourier transform.

The map Q→ S takes potentials in the Schwartz
class to scattering data in the Schwartz class
(Beals, Coifman (1985), Sung(1994)).

Beals and Coifman (1988) have shown that if
we have Q = Q∗ and Q is nice, then we have a
version of the Plancherel theorem∫

|Q|2 dµ =
∫
|S|2 dµ.

The proof is magic and does not give continu-
ity properties of the scattering map.

Barceló, Barceló and Ruiz (1999) have estab-
lished continuity of the map Q→ S when Q is
Hölder continuous and compactly supported.
This is one step in establishing the continuous
dependence of γ on Λγ in the inverse conduc-
tivity problem.
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The main result.

Theorem. (B. 2000) The map Q → S and

the inverse map S → Q extend continuously to

the set of 2×2 matrix-valued functions whose

diagonal entries are zero and for which the L2

norm is at most
√

2.
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A sketch of the proof.

The proof is fairly straightforward. We substi-

tute the series for m

m(·, z) = 1 +
∞∑
j=1

(GzQ)j(GzQ)(·)

into the definition of the scattering data,

S(z) = −
2J

π

∫
C
Ez(Q(x)m(x, z))o dµ(x)

and express S as the series

S(z) =
−2

π
J
∫
C
A(x,−z)Q(x)

×
∞∑
j=0

(GQGzQ)j(1) dµ(x)

≡
−2

π
J
∞∑
j=0

Sj(z).

Notice that the first term (j = 0) is essentially

the Fourier transform of S.
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A sketch of the proof. (continued)

We consider one entry in the jth term of the

series for S.

S12
k (z) =

1

π2k

∫
C2k+1

a1(−x0 + x1 − . . .− x2k, z)

×
Q12(x0) . . . Q12(x2k)

(x̄0 − x̄1) . . . (x2k−1 − x2k)
dµ(x0, . . . , x2k).

We estimate this by duality. Choose a suffi-

ciently nice function T , then we have∫
C
T (z)S12

k (z) dµ(z) =
1

π2k

∫
C2k+1

T̂ (2(x0 − x1 + x2 − . . .− x2k−1 + x2k))

×
Q12(x0)Q21(x1) . . . Q21(x2k−1)Q12(x2k)

(x̄0 − x̄1)(x1 − x2) . . . (x2k−1 − x2k)

dµ(x0, . . . , x2k).
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The main estimate.

Thus, we need to consider multi-linear expres-

sions of the form:

Ik(t, q0, . . . , q2k)

=
∫
C2k+1

t(x0 − x1 + x2 − . . .− x2k−1 + x2k)

|x0 − x1||x1 − x2| · · · |x2k−1 − x2k|

×
2k∏
j=0

qj(xj) dµ(x0, . . . , x2k).

The main technical estimate is

Lemma For every ε > 0, there exists a con-

stant Cε so that

Ik(t, q0, . . . , q2k) ≤ Cεπ2k(1 + ε)2k‖t‖2
2k∏
j=0

‖qj‖2.
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The end of the proof.

This estimate allows us to sum the series for

S in L2(C).

A bit more work, gives the continuous depen-

dence.

Finally, the inverse map S → Q is of a similar

form, and can be studied in the same way.
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Some questions.

1. Can we construct the solutions m when the

potential Q is in L2? The above argument

estimates the scattering map but does not

directly construct the Jost solutions, m.

2. Can we establish uniqueness in the inverse

conductivity problem when the coefficient

γ has only one derivative in L2?

3. In the plane, do we have continuous de-

pendence of the conductivity on the Dirich-

let to Neumann map when the conductivity

has one derivative in Lp, p > 2? p = 2?
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Some questions (continued).

4. Can we establish uniqueness for the inverse

conductivity problem in higher dimensions

when the conductivity has only one deriva-

tive in Lp for some p > n? The best re-

sult in higher dimensions shows that we

have uniqueness when the conductivity has

3/2 derivatives. This is due to Panchenko,

Paivarinta and Uhlmann (2000). Also, a

manuscript in preparation of the speaker

and R. Torres, will show uniqueness when

the conductivity has 3/2 derivatives in Lp

for p > 2n.

5. Can one construct examples of non-uniqueness?

That is, can we find two conductivities which

have the same Dirichlet to Neumann map?
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