As always, your work should be written out neatly and carefully. Use complete sentences.

1. Consider a triangle with vertices A, B and C. The point D is on the side $B C$ and the line segments $A D$ and $B C$ are perpendicular. Apply the Pythagorean theorem and the definition of the cosine function to show that if a, b and c are the lengths of the sides of the triangle and γ is the measure of the angle opposite the side of length c, then

$$
c^{2}=a^{2}+b^{2}-2 a b \cos \gamma
$$

2. Use the principle of mathematical induction to prove the differentiation rule for powers,

$$
\frac{d}{d x} x^{n}=n x^{n-1}, \quad n=1,2,3, \ldots
$$

Hint: The base case follows easily from the definition. For the induction step, write $x^{N+1}=x \cdot x^{N}$ and use the product rule.
3. Use the definition of the derivative to prove that if f is differentiable at a number a and $f(a) \neq 0$, then the reciprocal g defined by $g(x)=1 / f(x)$ is differentiable at a and

$$
g^{\prime}(a)=\frac{-f^{\prime}(a)}{f(a)^{2}} .
$$

In your paper, you should explain why f is continuous at a and why this is needed to find the derivative of g at a.

September 14, 2006

