1. (a) Give the values of the two basic limits

$$
\lim _{t \rightarrow 0} \frac{\sin (t)}{t} \quad \lim _{t \rightarrow 0} \frac{1-\cos (t)}{t}
$$

(b) Using the definition of the derivative, the two limits in part a) and the addition formula for \cos, find the derivative of $\cos (x)$. Try to justify each step.
2. Let $P Q$ be a line segment of fixed length 10 cm . Suppose that one end of the line segment Q is allowed to slide back a forth along the x-axis. The other end, P, is attached to a circle of radius 4 cm which is centered at the origin and rotates counter-clockwise at 20 revolutions per minute.

(a) At time $t=0$, the point P has coordinates (4, 0). Find functions $x(t)$ and $y(t)$ which give the coordinates of P at time t where time is measured in minutes.
(b) Give the location of P after 8 seconds.
(c) Find a function $q(t)$ which gives the x coordinate of Q at time t. Find the velocity of the point Q as a function of t.
(d) Give the velocity of $Q 34$ seconds after the point P is at $(4,0)$.
(e) At this time is Q moving towards the origin, away from the origin or is Q stationary?

February 2, 2006

