1 Lecture 02: Review of trig

- Definition of sin and cos.
- Definition of remaining trig functions
- Pythagorean identities, addition formulae

1.1 Definitions

If an angle in a circle of radius r cuts off an arc of length s, then the radian measure of the angle is s / r.

Example. Give the radian measure of a full circle? a right angle?
Solution. Since a circle of radius r has circumference $2 \pi r$, it follows that the radian measure of the full circle is 2π.

For a right angle, we note that a circle contains 4 right angles, so the radian measure of a right angle is $2 \pi / 4=\pi / 2$.

Does the measure of an angle depend on the circle we use? Why? No-if we change the radius, each length is multiplied by the same factor.

To define the basic trig functions $\cos (\theta)$ and $\sin (\theta)$, we draw a unit circle, move anti-clockwise to form an angle of measure θ and let $P(\theta)$ denote the point where the terminal side crosses the circle. The coordinates of this point give $(\cos (\theta), \sin (\theta))$,

$$
P(\theta)=(\cos (\theta), \sin (\theta))
$$

Example. Find $\cos (\theta)$ and $\sin (\theta)$ for the angles $\pi / 4,3 \pi / 4,5 \pi / 4$ and $7 \pi / 4$.

Solution. We begin with the angle $\pi / 4$. If we draw $P(\theta)$, we see that the triangle $O A B$ in the figure below has a right angle at A and an angle of $\pi / 4$ at). Since the angles sum to $\pi / 2$, the angle with vertex at B must be $\pi / 4$ also. Thus $O A B$ is an isosceles right triangle with hypotenuse of length 1 . If we let x denote the common length of the two sides, from the Pythagorean theorem we obtain

$$
x^{2}+x^{2}=1
$$

or $x^{2}=1 / 2$. Solving for x gives $x=1 / \sqrt{2}=\sqrt{2} / 2$. Thus $\cos (\pi / 4)=\sin (\pi / 4)=$ $\sqrt{2} / 2$.

For the angle $3 \pi / 4$, we obtain a point in the second quadrant with $\cos (\pi / 4)<0$ and $\sin (\pi / 4)>0$. Thus $\cos (\pi / 4)=-\sqrt{2} / 2$ and $\sin (\pi / 4)=\sqrt{2} / 2$.

In the third quadrant, both are negative thus $\cos (5 \pi / 4)=\sin (5 \pi / 4)=-\sqrt{2} / 2$. In the fourth quadrant, $\cos (\pi / 4)=\sqrt{2} / 2>0$ and $\sin (\pi / 4)=-\sqrt{2} / 2<0$.

Finally, we recall the remaining trig functions. These all are defined in terms of sin and cos.

$$
\tan (x)=\frac{\sin (x)}{\cos (x)}, \quad \cot (x)=\frac{\cos (x)}{\sin (x)}, \quad \sec (x)=\frac{1}{\cos (x)}, \quad \csc (x)=\frac{1}{\sin (x)} .
$$

Example. Give the domain of the function $\sec (x)$.
Solution. From examining the unit circle we see that $\cos (x)$ is defined on $(-\infty, \infty)$, but is zero at $\pi / 2$ and $\pi / 2$ plus any multiple of π. Thus the domain of the secant function is

$$
\left\{x: x \neq \frac{\pi}{2}+k \pi, k=0, \pm 1, \pm 2, \ldots\right\} .
$$

Example. Work out the values of all of the trigonometric functions at the angles $\pi / 6$ and $\pi / 3$.

1.2 Identities

We recall several important identities for the trig functions. First, since the point $P(\theta)$ lies on the unit circle, we have

$$
\begin{equation*}
\cos ^{2}(\theta)+\sin ^{2}(\theta)=1 \tag{1}
\end{equation*}
$$

Next, if we divide this identity by $\cos ^{2}(\theta)$, we obtain

$$
1+\tan ^{2}(\theta)=\sec ^{2}(\theta)
$$

Dividing (1) by $\sin ^{2}(\theta)$ gives

$$
1+\cot ^{2}(\theta)=\csc ^{2}(\theta)
$$

If we let $P(\theta)=(x, y)$, then we can see that $P(-\theta)=(x,-y)$, it follows that sin is odd and cos is even

$$
\cos (-\theta)=\cos (\theta), \quad \sin (-\theta)=-\sin (\theta)
$$

Finally, we recall the addition formula for sine and cosine.

$$
\sin (x+y)=\sin (x) \cos (y)+\cos (x) \sin (y)
$$

and

$$
\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y)
$$

If we set $x=y$, we obtain the double angle formulae

$$
\sin (2 \theta)=2 \sin (\theta) \cos (\theta)
$$

and using the Pythagorean identity (1) we obtain

$$
\cos (2 \theta)=\cos ^{2}(\theta)-\sin ^{2}(\theta)=2 \cos ^{2}(\theta)-1=1-2 \sin ^{2}(\theta)
$$

Example. Observe that $\sin (\pi / 3)=\cos (\pi / 6)$ and $\cos (\pi / 6)=\sin (\pi / 3)$. Use these observations and the double-angle formula for \cos to find $\cos (\pi / 3)$.

Solution. Using that the angles $\pi / 3$ and $\pi / 6$ are complementary, we see that $\cos (\pi / 3)=$ $\sin (\pi / 6)$. From the double angle formula

$$
\cos (\pi / 3)=1-2 \sin ^{2}(\pi / 6)
$$

and substituting for $\sin (\pi / 6)$ gives

$$
\cos \left(\pi / 3=1-2 \cos ^{2}(\pi / 3)\right.
$$

Rearranging gives the quadratic equation

$$
2 \cos ^{2}(\pi / 3)+\cos (\pi / 3)-1=0
$$

Solving this quadratic equation for $\cos (\pi / 3)$ gives

$$
\cos (\pi / 3)=\frac{-1 \pm \sqrt{1+8}}{4}=1 / 2 \text { or }-1
$$

Since $\cos (\pi / 3)>0$, we have $\cos (\pi / 3)=1 / 2$.

1.3 Inverse trigonometric functions

None of the trigonometric functions are one-to-one. However, by restricting the domain we obtain a one-to-one function. The standard choices for domains are below:

$$
\begin{array}{ll}
\sin (x) & {[-\pi / 2, \pi / 2]} \\
\cos (x) & {[0, \pi]} \\
\tan (x) & (-\pi / 2, \pi / 2) \\
\sec (x) & {[0, \pi / 2) \cup(\pi / 2, \pi]}
\end{array}
$$

The inverse function to sin on the domain $[-\pi / 2, \pi / 2]$ will be denoted using either the notation $\sin ^{-1}$ or \arcsin. The prefix arc suggests that when we find $\theta=\arcsin (x)$, we are looking for the angle or arc which has $\sin (\theta)=x$. Similar considerations apply to arccos or $\cos ^{-1}$, arctan or $\tan ^{-1}$, and arcsec or $\sec ^{-1}$.

Note that there is an inconsistency in our use of the notation $\sin ^{-1}$. The sin function does not have an inverse. Rather, we are taking the inverse of the function g with $g(x)=\sin (x)$ for x in the domain $[-\pi / 2, \pi / 2]$. The notation $\sin ^{-1}$ is ambiguous because it is not clear if it represents the inverse function arcsin or the reciprocal $1 / \sin =$ csc. Perhaps the next time we invent mathematics, we can find better notation.

Example. Sketch the graph of $\arcsin (x)$. Give the domain and range. Find $\arcsin (1 / 2)$.

Solution. We sketch the graph of $y=\sin (x)$ for x in $[-\pi / 2, \pi / 2]$. Several convenient points on the graph include $(-\pi / 2,-1),(0,0)$, and $(\pi / 2,1)$. Thus the points $(-1,-\pi / 2),(0,0)$, and $(1, \pi / 2)$ lie on the graph of $\sin ^{-1}$ or arcsin. Plotting these points and doing our best to fill in the intermediate points gives the graph in Figure 1.3.

We are considering $\sin (x)$ with domain $[-\pi / 2, \pi / 2]$ and range $[-1,1]$. The inverse function arcsin will have domain $[-1,1]$ and range $[-\pi / 2, \pi / 2]$.

To find $\arcsin (1 / 2)$, we recall that in a $\pi / 6, \pi / 3, \pi / 2$ triangle, with hypotenuse 1 , the legs are of length $1 / 2, \sqrt{3} / 2$ and $\sin (\pi / 6)=1 / 2$. Thus $\arcsin (1 / 2)=\pi / 6$.

Figure 1: Graph of $\sin (x)$ on $[-\pi / 2, \pi / 2]$ and $\sin ^{-1}(x)$

