1 Lecture 04: The tangent and velocity problem, informal treatment of limits

- Estimating the slope of a tangent line.
- Instantaneous velocity
- A limit that does not exist, one-sided limits
- Limits that approach infinity

1.1 The tangent problem

It is a well-known fact from geometry that the tangent to a circle is line that is perpendicular to the radius. One of the problems that can be studied using calculus is finding tangent lines to more general curves. Suppose we have a function $y=f(x)$ and want to define a tangent line to the graph.

We know several ways to write the equation of a line. The approach that is most useful in this problem is the "point-slope form of a line", the line through $\left(x_{0}, y_{0}\right)$ with slope m is

$$
y-y_{0}=m\left(x-x_{0}\right) .
$$

If we want to find the tangent line to $f(x)$ at $x=x_{0}$, then we know the line should pass through $\left(x_{0}, f\left(x_{0}\right)\right)$. The only mystery is what is the appropriate value for the slope. The technique we will use is to pick a point $(x, f(x))$ that is near $\left(x_{0}, f\left(x_{0}\right)\right)$ and compute the slope of the line joining $(x, f(x))$ and $\left(x_{0}, f\left(x_{0}\right)\right)$. This line which meets the graph of f at least twice will be called a secant line. We try various values of x that are close to $f(x)$ and hope that we can guess the value of the slope when the distance between x and x_{0} vanishes.

Example. Consider the function $f(x)=e^{x}$. What is the slope of the tangent line to the graph of f at $x=0$?

Solution. If x is a point near 0 , the slope of the line joining $(0, f(0))$ to $(x, f(x))$ is

$$
m=\frac{f(x)-f(0)}{x-0}=\frac{e^{x}-1}{x} .
$$

If we compute this for several values of x, we obtain

Value of x	Slope of secant line
0.1	1.105
0.01	1.005
-0.002	0.999
$1 / \pi^{3}$	1.0163

A moment's reflection might lead us to guess that the slope is 1 . Thus the tangent line to the graph of e^{x} is $y=x+1$. The graph below suggests that this correct.

Example. As a second example, we consider the function $f(x)=\sin (x)$ and find the tangent line at 0 .

Solution. Again we look at secant lines that touch the graph of $\sin (x)$ at two points near 0 . If we compute the slope of the secant line or the rate of change of the function on the intervals $[0,0.2],[-0.003,0]$, and $[0,0.0001]$ we obtain the following slopes

Interval $[a, b]$	$(\sin (b)-\sin (a)) /(b-a)$
$[0,0.2]$	0.99335
$[-0.003,0]$	0.999998500000675
$[0,0.0001]$	0.999999998333333

Figure 1: Estimating the slope of the curve $y=\sin (x)$ at 0 .
The slope of these lines appears to approach 1 as the interval shrinks to 0 . Thus, we guess that the slope of the tangent line is 1 . Since the tangent should pass through the point $(0, \sin (0))$, the equation is $y=1(x-0)$ or $y=x$.

1.2 Limits

The process we used in the previous section to find the tangent line is of fundamental importance. We give an informal definition.

Definition. Suppose $f(x)$ is a function that is defined an interval containing a number a, except possibly at a. If the values $f(x)$ become close to a number L when we let the distance between x and a approaches 0 , then we call L the limit of f as x approaches a and write

$$
\lim _{x \rightarrow a} f(x)=L
$$

In the previous example where we found the slope of the tangent line, we were trying to find:

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}
$$

The function $\left(e^{x}-1\right) / x$ is defined near $x=0$, but not at 0 . We are interested in trying to determine the behavior near 0 .

1.3 Velocity

To describe the motion of an object moving along a line, for example an object that is thrown straight up in the air, we use a position function. Suppose, we want to describe the velocity of the object. We recall the fundamental relation

$$
\text { distance }=\text { rate } \times \text { time } .
$$

In our case, we want to compute a velocity at $t=t_{0}$. Our solution will look similar (identical) to our solution of the tangent problem.

We fix a small interval $\left[t_{0}, t\right]$ with one endpoint t_{0} and a nearby time t. The distance travelled in this interval is $h(t)-h\left(t_{0}\right)$ and the time it takes to travel this distance is $t-t_{0}$. Thus the average velocity on this interval is

$$
\frac{h(t)-h\left(t_{0}\right)}{t-t_{0}} .
$$

If we let t approach t_{0}, and the average velocities cluster around one number, then we call this number the instantaneous velocity at t_{0}. This instantaneous velocity is given by the limit

$$
\lim _{t \rightarrow t_{0}} \frac{p(t)-p\left(t_{0}\right)}{t-t_{0}}
$$

Example. We give a simple numerical example. A ball thrown up in the air and its height in meters at time t seconds is given by $p(t)=-5 t^{2}+20 t$. Find the average velocity on the interval $(3,3+h)$ and guess the instantaneous velocity at 3 .

Solution. On the interval $3 \leq t \leq 3+h$, the change in position is $p(3+h)-p(3)$ meters and the time interval is of length $3+h-3=h$ seconds. Thus the average velocity is

$$
\frac{p(3+h)-p(3)}{h} .
$$

We could again try numerical values of h, but this problem we can simplify algebraically:

$$
\begin{align*}
\frac{p(3+h)-p(3)}{h} & =\frac{-5(3+h)^{2}+60+20 h-15}{h} \tag{1}\\
& =\frac{-10 h+5 h^{2}}{h} \tag{2}\\
& =-10+5 h \tag{3}
\end{align*}
$$

Using the last expression it is easy to see that this expression approaches -10 as h gets close to zero.

Using our new notation, we would write

$$
\lim _{h \rightarrow 0} \frac{p(3+h)-p(3)}{h}=-10 .
$$

and that the instantaneous velocity at 3 is -10 meters/second.
Exercise. Find the tangent line to the graph of $f(x)=\frac{1}{x}$ at $x=2$.
Exercise. A ball is thrown so that its height at time t is

$$
h(t)=-5 t^{2}+20 t
$$

meters after t seconds. Find the instantaneous velocity at time $t=2$ seconds. What are the units for this velocity?

Find the instantaneous velocity at an arbitrary time $t=a$.

1.4 One sided limits

Example. Can you find the tangent line to $f(x)=|x-1|$ at $x=1$?
Solution. In this case, we would want to consider the slope

$$
\frac{f(x)-f(1)}{x-1}=\frac{|x-1|}{x-1} .
$$

Let us call this a new function $g(x)=|x-1| /(x-1)$ and consider the graph of g,

Examining the graph, we see that the function g does not have a limit. When $x>1$, the value of g is 1 and when $x<1$, the value of g is -1 . As a result there is no single value which g approaches when x approaches 1 .

Returning to the graph of f, we see that there is a corner at $x=1$ and there is no clear way to define a single tangent line. The graph includes several lines with touch the graph at one point.

The previous example serves to introduce one-sided limits.
Definition. Suppose $f(x)$ is a function that is defined on an interval (a, b) for some $b>a$, except possibly at a. If the values $f(x)$ become close to a number L when the distance between x and a approaches 0 and $x>a$, then we call L the limit of f as x approaches a from above and write

$$
\lim _{x \rightarrow a^{+}} f(x)=L
$$

Definition. Suppose $f(x)$ is a function that is defined on an interval containing ($b, a)$ for some $b<a$. If the values $f(x)$ become close to a number L when the distance between x and a approaches 0 and $x<a$, then we call L the limit of f as x approaches a from below and write

$$
\lim _{x \rightarrow a^{-}} f(x)=L
$$

The following theorem gives the relation between one and two-sided limits.
Theorem 4 Suppose that f is a function defined on an open interval containing a, except possibly at a. Then we have $\lim _{x \rightarrow a} f(x)$ exists if and only if both of the one-sided limits $\lim _{x \rightarrow a^{+}} f(x)$ and $\lim _{x \rightarrow a^{-}} f(x)$ exist and are equal.

Example. Consider the graph of $f(x)=\frac{x^{2}-x-2}{x-2}$. Find $\lim _{x \rightarrow 2} f(x)$.
Solution. In figure 1.4 we graph the function $\left(x^{2}-x-2\right) /(x-2)$. Note that if $x \neq 2$, then f simplifies to the linear function $(x+1)$ and $x=2$ is not in the domain of f. From the graph in figure 1.4 it is clear that the limit is 3 .

1.5 Limits that are infinite

Recall that if $\lim _{x \rightarrow a} f(x)=L$, the values of f become arbitrarily close to L, but we may never have $f(x)=L$. We want to describe the behavior of a function like $f(x)=1 / x^{2}$ near $x=0$. As x small, the reciprocal $1 / x^{2}$ becomes large and positive. We say that $\lim _{x \rightarrow 0} \frac{1}{x}^{2}=+\infty$. But there is no number ∞ so that f never reaches ∞.

We try to give a definition of this behaviour.
Definition. We say that the limit of f as x approaches a is $+\infty$ and write

$$
\lim _{x \rightarrow a} f(x)=\infty
$$

if the values of f become arbitrarily large and positive as the distance between x and a approaches 0 .

Figure 2: Graph of $f(x)=\left(x^{2}-x-2\right) /(x-2)$.

We leave it to the reader to define what it means for a limit to be $-\infty$ and one-sided limits which approach $\pm \infty$.

Example. Discuss the limit $\lim _{x \rightarrow-4} x-8 x-4$.
Solution. If we consider values of $x>4$, then $x-4>0$, but becomes small as x approaches 4 . Thus the reciprocal $1 /(x-4)$ approaches $+\infty$ as x approaches 4 from the left. Also $x-8<0$ for x near 4 . Together we have

$$
\lim _{x \rightarrow 4^{+}} \frac{x-8}{x-4}=-\infty
$$

Similar reasoning with $x<4$, but close to 4 gives that

$$
\lim _{x \rightarrow 4^{-}} \frac{x-8}{x-4}=+\infty
$$

Since the left and right limits are not the same, the limit does not exist and is not $+\infty$ or $-\infty$.

